Loading…

Multi-color emission based on InGaN/GaN micro-truncated pyramid arrays

3D micro-nano devices are expected to become the mainstay of multi-color solid-state lighting in the future because of their broad-band characteristic and the advantage of integrating the monolithic light-emitting diode on a single chip. In this work, InGaN/GaN micro-truncated pyramid arrays with si...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2024-05, Vol.14 (5), p.055011-055011-8
Main Authors: Jia, Wei, Du, Zhiwei, Zhang, Lifan, Yin, Ruimei, Dong, Hailiang, Li, Tianbao, Jia, Zhigang, Xu, Bingshe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:3D micro-nano devices are expected to become the mainstay of multi-color solid-state lighting in the future because of their broad-band characteristic and the advantage of integrating the monolithic light-emitting diode on a single chip. In this work, InGaN/GaN micro-truncated pyramid arrays with six equivalent (101̄1) semi-polar facets and one (0001) polar facet were successfully prepared by the metal-organic chemical vapor deposition technology. The average diameter of the obtained uniform micro-truncated pyramids was 6.8 µm with a height of 2.4 µm. According to the results of micro-photoluminescence performed, the InGaN/GaN micro-truncated pyramid arrays can achieve multi-color emission from blue to red. The luminescent positions corresponding to different wavelengths were detected by the cathode luminescence spectrum. The multi-color emission was related to the quantum hybrid structures apart from the discrepancy of In composition in different positions. The developed microstructure can create multi-color emission by combining distinct luminescence modes, which can aid in the design of future optoelectronic devices.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0191380