Loading…

Xenogeneic-Free Human Intestinal Organoids for Assessing Intestinal Nutrient Absorption

Since many nutrients, including the three major ones of glucose, dipeptides, and cholesterol, are mainly absorbed in the small intestine, the assessment of their effects on intestinal tissue is important for the study of food absorption. However, cultured intestinal cell lines, such as Caco-2 cells,...

Full description

Saved in:
Bibliographic Details
Published in:Nutrients 2022-01, Vol.14 (3), p.438
Main Authors: Inoue, Makoto, Tanaka, Yuichi, Matsushita, Sakiko, Shimozaki, Yuri, Ayame, Hirohito, Akutsu, Hidenori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since many nutrients, including the three major ones of glucose, dipeptides, and cholesterol, are mainly absorbed in the small intestine, the assessment of their effects on intestinal tissue is important for the study of food absorption. However, cultured intestinal cell lines, such as Caco-2 cells, or animal models, which differ from normal human physiological conditions, are generally used for the evaluation of intestinal absorption and digestion. Therefore, it is necessary to develop an alternative in vitro method for more accurate analyses. In this study, we demonstrate inhibitory effects on nutrient absorption through nutrient transporters using three-dimensional xenogeneic-free human intestinal organoids (XF-HIOs), with characteristics of the human intestine, as we previously reported. We first show that the organoids absorbed glucose, dipeptide, and cholesterol in a transporter-dependent manner. Next, we examine the inhibitory effect of natural ingredients on the absorption of glucose and cholesterol. We reveal that glucose absorption was suppressed by epicatechin gallate or nobiletin, normally found in green tea catechin or citrus fruits, respectively. In comparison, cholesterol absorption was not inhibited by luteolin and quercetin, contained in some vegetables. Our findings highlight the usefulness of screening for the absorption of functional food substances using XF-HIOs.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu14030438