Loading…
Dyes Adsorption Behavior of Fe3O4 Nanoparticles Functionalized Polyoxometalate Hybrid
The magnetic adsorbent, Fe3O4@[Ni(HL)2]2H2[P2Mo5O23]·2H2O (Fe3O4@1), is synthesized by employing the nanoparticles Fe3O4 and polyoxometalate hybrid 1. Zero-field-cooled (ZFC) and field-cooled (FC) curves show that the blocking temperature of Fe3O4@1 was at 120 K. Studies of Fe3O4@1 removing cationic...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2019-08, Vol.24 (17), p.3128 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The magnetic adsorbent, Fe3O4@[Ni(HL)2]2H2[P2Mo5O23]·2H2O (Fe3O4@1), is synthesized by employing the nanoparticles Fe3O4 and polyoxometalate hybrid 1. Zero-field-cooled (ZFC) and field-cooled (FC) curves show that the blocking temperature of Fe3O4@1 was at 120 K. Studies of Fe3O4@1 removing cationic and anionic dyes from water have been explored. The characterization of Fe3O4@1, effects of critical factors such as dosage, the concentration of methylene blue (MB), pH, adsorption kinetics, isotherm, the removal selectivity of substrate and the reusability of Fe3O4@1 were assessed. The magnetic adsorbent displayed an outstanding removal activity for the cationic dye at a broad range of pH. The adsorption kinetics and isotherm models revealed that the adsorption process of Fe3O4@1 was mainly governed via chemisorption. The maximum capacity of Fe3O4@1 adsorbing substance was 41.91 mg g−1. Furthermore, Fe3O4@1 showed its high stability by remaining for seven runs of the adsorption-desorption process with an effective MB removal rate, and could also be developed as a valuable adsorbent for dyes elimination from aqueous system. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules24173128 |