Loading…

Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins

Lipoproteins are important for bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM),...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-08, Vol.12 (1), p.4687-11, Article 4687
Main Authors: Sharma, Stuti, Zhou, Ruoyu, Wan, Li, Feng, Shan, Song, KangKang, Xu, Chen, Li, Yanyan, Liao, Maofu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-a53fa506b8362fd31e08df320fb7252e9dbcf28e90102ec980ee226ff77eeb013
cites cdi_FETCH-LOGICAL-c573t-a53fa506b8362fd31e08df320fb7252e9dbcf28e90102ec980ee226ff77eeb013
container_end_page 11
container_issue 1
container_start_page 4687
container_title Nature communications
container_volume 12
creator Sharma, Stuti
Zhou, Ruoyu
Wan, Li
Feng, Shan
Song, KangKang
Xu, Chen
Li, Yanyan
Liao, Maofu
description Lipoproteins are important for bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM), a process dependent on the ATP-binding cassette (ABC) transporter LolCDE which extracts the OM-targeted lipoproteins from the cytoplasmic membrane. Lipid-anchored proteins pose a unique challenge for transport machinery as they have both hydrophobic lipid moieties and soluble protein component, and the underlying mechanism is poorly understood. Here we determined the cryo-EM structures of nanodisc-embedded LolCDE in the nucleotide-free and nucleotide-bound states at 3.8-Å and 3.5-Å resolution, respectively. The structural analyses, together with biochemical and mutagenesis studies, uncover how LolCDE recognizes its substrate by interacting with the lipid and N-terminal peptide moieties of the lipoprotein, and identify the amide-linked acyl chain as the key element for LolCDE interaction. Upon nucleotide binding, the transmembrane helices and the periplasmic domains of LolCDE undergo large-scale, asymmetric movements, resulting in extrusion of the captured lipoprotein. Comparison of LolCDE and MacB reveals the conserved mechanism of type VII ABC transporters and emphasizes the unique properties of LolCDE as a molecule extruder of triacylated lipoproteins. In Gram-negative bacteria, lipoproteins are transported from the inner membrane (IM) to the outer membrane (OM) by the ATP-binding cassette (ABC) transporter LolCDE. Here the authors present cryo-EM structures of nanodisc-embedded LolCDE in different states, providing mechanistic insight into the transport mechanism.
doi_str_mv 10.1038/s41467-021-24965-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bb2fc5fe97904f1d8ba8289605946e21</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bb2fc5fe97904f1d8ba8289605946e21</doaj_id><sourcerecordid>2557673304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-a53fa506b8362fd31e08df320fb7252e9dbcf28e90102ec980ee226ff77eeb013</originalsourceid><addsrcrecordid>eNp9kV9vFCEUxYmxsU3tF_DBTOLzVP7OwIuJWWttssY0aZ8JMJftbNhhBcbYby_bqbV98T4A4R5-95CD0DuCzwlm8mPmhHd9iylpKVedaMkrdEIxJy3pKXv97HyMznLe4lpMEcn5G3TMOONcYXKCrr-DuzPTmHdN9M06htWXi8bkxjS7GMDNwaQGfpc0D5AOCmtcgTSa0JS6uvtgCgxNGPdxn2KBccpv0ZE3IcPZ436Kbr9e3Ky-tesfl1erz-vWiZ6V1gjmjcCdlayjfmAEsBw8o9jbngoKarDOUwnVJabglMQAlHbe9z2AxYSdoquFO0Sz1fs07ky619GM-uEipo02qYwugLaWeic8qF5h7skgrZFUqg4LxTugB9anhbWf7Q4GB1NJJryAvuxM453exF9aslpYVcCHR0CKP2fIRW_jnKb6f02F6Lu-qnhV0UXlUsw5gX-aQLA-pKqXVHVNVT-kqg_e3j_39vTkb4ZVwBZBrq1pA-nf7P9g_wBZOq2c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557673304</pqid></control><display><type>article</type><title>Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins</title><source>Nature_系列刊</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sharma, Stuti ; Zhou, Ruoyu ; Wan, Li ; Feng, Shan ; Song, KangKang ; Xu, Chen ; Li, Yanyan ; Liao, Maofu</creator><creatorcontrib>Sharma, Stuti ; Zhou, Ruoyu ; Wan, Li ; Feng, Shan ; Song, KangKang ; Xu, Chen ; Li, Yanyan ; Liao, Maofu</creatorcontrib><description>Lipoproteins are important for bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM), a process dependent on the ATP-binding cassette (ABC) transporter LolCDE which extracts the OM-targeted lipoproteins from the cytoplasmic membrane. Lipid-anchored proteins pose a unique challenge for transport machinery as they have both hydrophobic lipid moieties and soluble protein component, and the underlying mechanism is poorly understood. Here we determined the cryo-EM structures of nanodisc-embedded LolCDE in the nucleotide-free and nucleotide-bound states at 3.8-Å and 3.5-Å resolution, respectively. The structural analyses, together with biochemical and mutagenesis studies, uncover how LolCDE recognizes its substrate by interacting with the lipid and N-terminal peptide moieties of the lipoprotein, and identify the amide-linked acyl chain as the key element for LolCDE interaction. Upon nucleotide binding, the transmembrane helices and the periplasmic domains of LolCDE undergo large-scale, asymmetric movements, resulting in extrusion of the captured lipoprotein. Comparison of LolCDE and MacB reveals the conserved mechanism of type VII ABC transporters and emphasizes the unique properties of LolCDE as a molecule extruder of triacylated lipoproteins. In Gram-negative bacteria, lipoproteins are transported from the inner membrane (IM) to the outer membrane (OM) by the ATP-binding cassette (ABC) transporter LolCDE. Here the authors present cryo-EM structures of nanodisc-embedded LolCDE in different states, providing mechanistic insight into the transport mechanism.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24965-1</identifier><identifier>PMID: 34344901</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/326/41/2536 ; 631/535/1258/1259 ; 82/29 ; 82/58 ; 82/80 ; 82/83 ; Acylation ; Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Antibiotic resistance ; Antibiotics ; ATP-Binding Cassette Transporters - chemistry ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Bacteria ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Binding ; Binding Sites ; Cell Membrane - metabolism ; Chains ; Cryoelectron Microscopy ; Cytoplasmic membranes ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Extrusion ; Gram-negative bacteria ; Helices ; Humanities and Social Sciences ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Lipids ; Lipoproteins ; Lipoproteins - metabolism ; Membranes ; multidisciplinary ; Mutagenesis ; Mutation ; Nucleotides ; Periplasm - metabolism ; Protein Conformation ; Protein Transport ; Proteins ; Science ; Science (multidisciplinary) ; Substrates</subject><ispartof>Nature communications, 2021-08, Vol.12 (1), p.4687-11, Article 4687</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-a53fa506b8362fd31e08df320fb7252e9dbcf28e90102ec980ee226ff77eeb013</citedby><cites>FETCH-LOGICAL-c573t-a53fa506b8362fd31e08df320fb7252e9dbcf28e90102ec980ee226ff77eeb013</cites><orcidid>0000-0002-3481-450X ; 0000-0002-8109-7574 ; 0000-0002-1478-0445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2557673304/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2557673304?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25730,27900,27901,36988,44565,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34344901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Stuti</creatorcontrib><creatorcontrib>Zhou, Ruoyu</creatorcontrib><creatorcontrib>Wan, Li</creatorcontrib><creatorcontrib>Feng, Shan</creatorcontrib><creatorcontrib>Song, KangKang</creatorcontrib><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Li, Yanyan</creatorcontrib><creatorcontrib>Liao, Maofu</creatorcontrib><title>Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Lipoproteins are important for bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM), a process dependent on the ATP-binding cassette (ABC) transporter LolCDE which extracts the OM-targeted lipoproteins from the cytoplasmic membrane. Lipid-anchored proteins pose a unique challenge for transport machinery as they have both hydrophobic lipid moieties and soluble protein component, and the underlying mechanism is poorly understood. Here we determined the cryo-EM structures of nanodisc-embedded LolCDE in the nucleotide-free and nucleotide-bound states at 3.8-Å and 3.5-Å resolution, respectively. The structural analyses, together with biochemical and mutagenesis studies, uncover how LolCDE recognizes its substrate by interacting with the lipid and N-terminal peptide moieties of the lipoprotein, and identify the amide-linked acyl chain as the key element for LolCDE interaction. Upon nucleotide binding, the transmembrane helices and the periplasmic domains of LolCDE undergo large-scale, asymmetric movements, resulting in extrusion of the captured lipoprotein. Comparison of LolCDE and MacB reveals the conserved mechanism of type VII ABC transporters and emphasizes the unique properties of LolCDE as a molecule extruder of triacylated lipoproteins. In Gram-negative bacteria, lipoproteins are transported from the inner membrane (IM) to the outer membrane (OM) by the ATP-binding cassette (ABC) transporter LolCDE. Here the authors present cryo-EM structures of nanodisc-embedded LolCDE in different states, providing mechanistic insight into the transport mechanism.</description><subject>101/28</subject><subject>631/326/41/2536</subject><subject>631/535/1258/1259</subject><subject>82/29</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>Acylation</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>ATP-Binding Cassette Transporters - chemistry</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Cell Membrane - metabolism</subject><subject>Chains</subject><subject>Cryoelectron Microscopy</subject><subject>Cytoplasmic membranes</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Extrusion</subject><subject>Gram-negative bacteria</subject><subject>Helices</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Lipoproteins - metabolism</subject><subject>Membranes</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Periplasm - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrates</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV9vFCEUxYmxsU3tF_DBTOLzVP7OwIuJWWttssY0aZ8JMJftbNhhBcbYby_bqbV98T4A4R5-95CD0DuCzwlm8mPmhHd9iylpKVedaMkrdEIxJy3pKXv97HyMznLe4lpMEcn5G3TMOONcYXKCrr-DuzPTmHdN9M06htWXi8bkxjS7GMDNwaQGfpc0D5AOCmtcgTSa0JS6uvtgCgxNGPdxn2KBccpv0ZE3IcPZ436Kbr9e3Ky-tesfl1erz-vWiZ6V1gjmjcCdlayjfmAEsBw8o9jbngoKarDOUwnVJabglMQAlHbe9z2AxYSdoquFO0Sz1fs07ky619GM-uEipo02qYwugLaWeic8qF5h7skgrZFUqg4LxTugB9anhbWf7Q4GB1NJJryAvuxM453exF9aslpYVcCHR0CKP2fIRW_jnKb6f02F6Lu-qnhV0UXlUsw5gX-aQLA-pKqXVHVNVT-kqg_e3j_39vTkb4ZVwBZBrq1pA-nf7P9g_wBZOq2c</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Sharma, Stuti</creator><creator>Zhou, Ruoyu</creator><creator>Wan, Li</creator><creator>Feng, Shan</creator><creator>Song, KangKang</creator><creator>Xu, Chen</creator><creator>Li, Yanyan</creator><creator>Liao, Maofu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3481-450X</orcidid><orcidid>https://orcid.org/0000-0002-8109-7574</orcidid><orcidid>https://orcid.org/0000-0002-1478-0445</orcidid></search><sort><creationdate>20210803</creationdate><title>Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins</title><author>Sharma, Stuti ; Zhou, Ruoyu ; Wan, Li ; Feng, Shan ; Song, KangKang ; Xu, Chen ; Li, Yanyan ; Liao, Maofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-a53fa506b8362fd31e08df320fb7252e9dbcf28e90102ec980ee226ff77eeb013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>631/326/41/2536</topic><topic>631/535/1258/1259</topic><topic>82/29</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>Acylation</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>ATP-Binding Cassette Transporters - chemistry</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Cell Membrane - metabolism</topic><topic>Chains</topic><topic>Cryoelectron Microscopy</topic><topic>Cytoplasmic membranes</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Extrusion</topic><topic>Gram-negative bacteria</topic><topic>Helices</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Lipoproteins - metabolism</topic><topic>Membranes</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Periplasm - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Stuti</creatorcontrib><creatorcontrib>Zhou, Ruoyu</creatorcontrib><creatorcontrib>Wan, Li</creatorcontrib><creatorcontrib>Feng, Shan</creatorcontrib><creatorcontrib>Song, KangKang</creatorcontrib><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Li, Yanyan</creatorcontrib><creatorcontrib>Liao, Maofu</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Stuti</au><au>Zhou, Ruoyu</au><au>Wan, Li</au><au>Feng, Shan</au><au>Song, KangKang</au><au>Xu, Chen</au><au>Li, Yanyan</au><au>Liao, Maofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-08-03</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>4687</spage><epage>11</epage><pages>4687-11</pages><artnum>4687</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Lipoproteins are important for bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM), a process dependent on the ATP-binding cassette (ABC) transporter LolCDE which extracts the OM-targeted lipoproteins from the cytoplasmic membrane. Lipid-anchored proteins pose a unique challenge for transport machinery as they have both hydrophobic lipid moieties and soluble protein component, and the underlying mechanism is poorly understood. Here we determined the cryo-EM structures of nanodisc-embedded LolCDE in the nucleotide-free and nucleotide-bound states at 3.8-Å and 3.5-Å resolution, respectively. The structural analyses, together with biochemical and mutagenesis studies, uncover how LolCDE recognizes its substrate by interacting with the lipid and N-terminal peptide moieties of the lipoprotein, and identify the amide-linked acyl chain as the key element for LolCDE interaction. Upon nucleotide binding, the transmembrane helices and the periplasmic domains of LolCDE undergo large-scale, asymmetric movements, resulting in extrusion of the captured lipoprotein. Comparison of LolCDE and MacB reveals the conserved mechanism of type VII ABC transporters and emphasizes the unique properties of LolCDE as a molecule extruder of triacylated lipoproteins. In Gram-negative bacteria, lipoproteins are transported from the inner membrane (IM) to the outer membrane (OM) by the ATP-binding cassette (ABC) transporter LolCDE. Here the authors present cryo-EM structures of nanodisc-embedded LolCDE in different states, providing mechanistic insight into the transport mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34344901</pmid><doi>10.1038/s41467-021-24965-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3481-450X</orcidid><orcidid>https://orcid.org/0000-0002-8109-7574</orcidid><orcidid>https://orcid.org/0000-0002-1478-0445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-08, Vol.12 (1), p.4687-11, Article 4687
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bb2fc5fe97904f1d8ba8289605946e21
source Nature_系列刊; Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/28
631/326/41/2536
631/535/1258/1259
82/29
82/58
82/80
82/83
Acylation
Adenosine triphosphate
Adenosine Triphosphate - metabolism
Antibiotic resistance
Antibiotics
ATP-Binding Cassette Transporters - chemistry
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
Bacteria
Bacterial Outer Membrane Proteins - chemistry
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
Binding
Binding Sites
Cell Membrane - metabolism
Chains
Cryoelectron Microscopy
Cytoplasmic membranes
Escherichia coli - genetics
Escherichia coli - metabolism
Extrusion
Gram-negative bacteria
Helices
Humanities and Social Sciences
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Lipids
Lipoproteins
Lipoproteins - metabolism
Membranes
multidisciplinary
Mutagenesis
Mutation
Nucleotides
Periplasm - metabolism
Protein Conformation
Protein Transport
Proteins
Science
Science (multidisciplinary)
Substrates
title Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20LolCDE%20as%20a%20molecular%20extruder%20of%20bacterial%20triacylated%20lipoproteins&rft.jtitle=Nature%20communications&rft.au=Sharma,%20Stuti&rft.date=2021-08-03&rft.volume=12&rft.issue=1&rft.spage=4687&rft.epage=11&rft.pages=4687-11&rft.artnum=4687&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24965-1&rft_dat=%3Cproquest_doaj_%3E2557673304%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-a53fa506b8362fd31e08df320fb7252e9dbcf28e90102ec980ee226ff77eeb013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557673304&rft_id=info:pmid/34344901&rfr_iscdi=true