Loading…

Neuroplasticity in post-stroke gait recovery and noninvasive brain stimulation

Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment.However,a large inter-individual variability i...

Full description

Saved in:
Bibliographic Details
Published in:Neural regeneration research 2015-12, Vol.10 (12), p.2072-2080
Main Authors: Xu, Yi, Hou, Qing-Hua, Russell, Shawn D, Bennett, Bradford C, Sellers, Andrew J, Lin, Qiang, Huang, Dong-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment.However,a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized.We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery,and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery.While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity,it evolves over time,is idiosyncratic,and may develop maladaptive elements.Furthermore,noninvasive brain stimulation has limited reach capability and is facilitative-only in nature.Therefore,we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques.Additionally,when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors,stimulation montages should be customized according to the specific types of neuroplasticity found in each individual.This could be done using multiple mapping techniques.
ISSN:1673-5374
1876-7958
DOI:10.4103/1673-5374.172329