Loading…
Enabling the design of surgical instruments for under-resourced patients through metal additive manufacturing: ulnar shortening osteotomy as an example
Background Ulnar shortening osteotomy (USO) has demonstrated good outcomes for patients with ulnar impaction syndrome. To minimize complications such as non-union, precise osteotomy and firm fixation are warranted. Despite various ulnar shortening systems have been developed, current technology does...
Saved in:
Published in: | 3D printing in medicine 2024-05, Vol.10 (1), p.18-18, Article 18 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Ulnar shortening osteotomy (USO) has demonstrated good outcomes for patients with ulnar impaction syndrome. To minimize complications such as non-union, precise osteotomy and firm fixation are warranted. Despite various ulnar shortening systems have been developed, current technology does not meet all needs. A considerable portion of patients could not afford those designated USO systems. To tackle this challenge, our team reported successful results in standardized free-hand predrilled USO technique. However, it is still technical demanding and requires sufficient experience and confidence to excel. Therefore, our team designed an ulnar shortening system based on our free-hand technique principle, using metal additive manufacturing technology. The goal of this study is to describe the development process and report the performance of the system.
Methods
Utilizing metal additive manufacturing technology, our team developed an ulnar shortening system that requires minimal exposure, facilitates precise cutting, and allows for the easy placement of a 3.5 mm dynamic compression plate, available to patients at zero out-of-pocket cost. For performance testing, two surgeons with different levels of experience in ulnar shortening procedures were included: one fellow-trained hand and wrist surgeon and one senior resident. They performed ulnar shortening osteotomy (USO) using both the free-hand technique and the USO system-assisted technique on ulna sawbones, repeating each method three times. The recorded parameters included time-to-complete-osteotomy, total procedure time, chip diameter, shortening length, maximum residual gap, and deviation angle.
Results
For the hand and wrist fellow, with the USO system, the time-to-complete osteotomy was significantly reduced. (468.7 ± 63.6 to 260.0 ± 5 s,
p
|
---|---|
ISSN: | 2365-6271 2365-6271 |
DOI: | 10.1186/s41205-024-00220-3 |