Loading…
Computational Fluid Dynamics Investigation of Hydrodynamic Forces and Moments Acting on Stern Rudder Plane Configurations of a Submarine
This study presents the predicted hydrodynamic characteristics of different rudder plane configurations on the stern of a full-scale submarine in deep water, which are obtained using the Reynolds-Averaged Navier–Stokes method in Ansys Fluent Solver. First, the results obtained for the X-rudder plane...
Saved in:
Published in: | Applied sciences 2024-05, Vol.14 (10), p.4292 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presents the predicted hydrodynamic characteristics of different rudder plane configurations on the stern of a full-scale submarine in deep water, which are obtained using the Reynolds-Averaged Navier–Stokes method in Ansys Fluent Solver. First, the results obtained for the X-rudder plane configuration are verified according to previous numerical and experimental results in order to assess the accuracy of the simulation procedure. The X-rudder plane, Y-rudder plane, and Cross-rudder plane configurations in deep water with deflection angles ranging from −21 degrees to +21 degrees are then simulated. Next, the hydrodynamic forces and moments of the Cross-plane, X-plane, and Y-plane rudder configurations obtained through simulation are analyzed using Taylor’s expansion to estimate the hydrodynamic coefficients. The obtained results demonstrate that the X-force of the X-plane rudder configuration is larger than the corresponding forces acting on the Cross-plane rudder and Y-plane rudder configurations. Meanwhile, the Y-force and Z-force of the X-plane rudder configuration are significantly greater than the corresponding forces of the left configurations. The same tendency can be seen in the moment of the X-plane rudder about the y- and z-axes. However, the roll moment induced by the Y-plane and Cross-plane rudder configurations is significantly larger than that under the X-plane rudder configuration. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14104292 |