Loading…

Host-Parasite Relationships of Quill Mites (Syringophilidae) and Parrots (Psittaciformes)

The family Syringophilidae (Acari: Prostigmata) includes obligatory ectoparasites, which occupy feather quills from various parts of avian plumage, where they feed and reproduce. Our study was concerned with the global fauna of syringophilid mites associated with Psittaciformes, as well as host-para...

Full description

Saved in:
Bibliographic Details
Published in:Diversity (Basel) 2023-01, Vol.15 (1), p.1
Main Authors: Marciniak-Musial, Natalia, Skoracki, Maciej, Kosicki, Jakub Z., Unsöld, Markus, Sikora, Bozena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The family Syringophilidae (Acari: Prostigmata) includes obligatory ectoparasites, which occupy feather quills from various parts of avian plumage, where they feed and reproduce. Our study was concerned with the global fauna of syringophilid mites associated with Psittaciformes, as well as host-parasite specificity and evolution. We assumed that the system composed of quill mites and parrots represents a model group that can be used in a broader study of the relationships between parasites and hosts. In total, we examined 1524 host individuals of parrots belonging to 195 species, 73 genera, and 4 families (which constitute ca. 50% of global parrot fauna) from all zoogeographical regions where Psittaciformes occur. Among them, 89 individuals representing 81 species have been infested by quill mites belonging to 45 species and 8 genera. The prevalence of host infestations by syringophilid mites varied from 2.8% to 100% (95% confidence interval (CI Sterne method) = 0.1–100). We applied a bipartite analysis to determine the parasite-host interaction, network indices, and host specificity at the species and whole network levels. The Syringophilidae-Psittaciformes network was composed of 24 mite species and 47 host species. The bipartite network was characterized by a high network level specialization H2′ = 0.98, connectance C = 0.89, and high modularity Q = 0.90, with 23 modules, but low nestedness N = 0.0333. Moreover, we reconstructed the phylogeny of the quill mites on the generic level, and this analysis shows two distinct clades: Psittaciphilus (Peristerophila + Terratosyringophilus) (among Syringophilinae subfamily) and Lawrencipicobia (Pipicobia + Rafapicobia) (among Picobiinae). Finally, the distributions and host-parasite relationships in the system composed of syringophilid mites and parrots are discussed.
ISSN:1424-2818
1424-2818
DOI:10.3390/d15010001