Loading…
Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times
To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstruc...
Saved in:
Published in: | Advances in civil engineering 2018-01, Vol.2018 (2018), p.1-9 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443 |
---|---|
cites | cdi_FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443 |
container_end_page | 9 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Advances in civil engineering |
container_volume | 2018 |
creator | Wang, Mei Wang, Pai Liu, Lang Qin, Xuebin Xin, Jie |
description | To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstructure parameter software is developed for analyzing the CPB consolidation process, which quantitatively analyzes the mechanical response of CPBs at a microscopic scale. Based on the fuzzy clustering method, CPB microscopic pore images are extracted via digital image processing technology. Microscopic CPB pores are extracted from images via cluster analysis, binarization, and denoising techniques. Then, images are evaluated for porosity, number of pores, average pore width, fractal dimension, weighted probability entropy, and 11 more indicators to quantitatively analyze pores. Thus, the proposed method forms nonlinear relationships between microstructure parameters and mechanical responses based on a deep learning TensorFlow framework under different curing times. Results show that the multiparameter predictive mechanical response at the microscopic scale has a good effect, and the predicted average error is 9.51%. The accuracy of the proposed method is higher than that of the traditional method. Therefore, the proposed method provides a new method to quantitatively analyze the mechanical response strength prediction at a microscale. |
doi_str_mv | 10.1155/2018/2837571 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bbb9eb96221e43a5b440a54e9ed38e12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bbb9eb96221e43a5b440a54e9ed38e12</doaj_id><sourcerecordid>2055948889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443</originalsourceid><addsrcrecordid>eNqF0c1vFCEYBvCJ0cSm7c2zIfGoa_mceTnqtNomNTaxngkDL1vq7rACGzX-87JOU4-eIOTHA3mfrnvB6FvGlDrjlMEZBzGogT3pjlgPwwqolk8f99A_705LiROVcuDAOTvqfn-KLqfi0i46cmOz3WLFTC5-1mxdjWkmdvZkTDlj2aXZx3lNvtSM87rekZuMPi4qBTLiFueKvsWUiuS9dd9C3GyIreQ8hoDtUiXjPh8ibuMWy0n3LNhNwdOH9bj7-uHidrxcXX_-eDW-u145JWhdqQCgvOZBWI898KkHFB497REU6y2zTgrKnOOAHKTnzSJTYgKp9SClOO6ullyf7L3Z5bi1-ZdJNpq_Bymvjc01ug2aaZo0Trpvs0EprJqkpFZJ1OgFIOMt69WStcvp-x5LNfdpn-f2fcOpUloCgG7qzaIOsy0Zw-OrjJpDW-bQlnloq_HXC7-Ls7c_4v_0y0VjMxjsP93sIIT4AwNgnow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055948889</pqid></control><display><type>article</type><title>Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times</title><source>Wiley-Blackwell Open Access Titles</source><source>Publicly Available Content Database</source><creator>Wang, Mei ; Wang, Pai ; Liu, Lang ; Qin, Xuebin ; Xin, Jie</creator><contributor>Wang, Yixian ; Yixian Wang</contributor><creatorcontrib>Wang, Mei ; Wang, Pai ; Liu, Lang ; Qin, Xuebin ; Xin, Jie ; Wang, Yixian ; Yixian Wang</creatorcontrib><description>To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstructure parameter software is developed for analyzing the CPB consolidation process, which quantitatively analyzes the mechanical response of CPBs at a microscopic scale. Based on the fuzzy clustering method, CPB microscopic pore images are extracted via digital image processing technology. Microscopic CPB pores are extracted from images via cluster analysis, binarization, and denoising techniques. Then, images are evaluated for porosity, number of pores, average pore width, fractal dimension, weighted probability entropy, and 11 more indicators to quantitatively analyze pores. Thus, the proposed method forms nonlinear relationships between microstructure parameters and mechanical responses based on a deep learning TensorFlow framework under different curing times. Results show that the multiparameter predictive mechanical response at the microscopic scale has a good effect, and the predicted average error is 9.51%. The accuracy of the proposed method is higher than that of the traditional method. Therefore, the proposed method provides a new method to quantitatively analyze the mechanical response strength prediction at a microscale.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2018/2837571</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Backfill ; Cement ; Cementing ; Civil engineering ; Cluster analysis ; Clustering ; Concrete ; Consolidation ; Crack propagation ; Curing ; Digital imaging ; Drinking water ; Engineering ; Failure ; Fractals ; Grain size ; Image processing ; Machine learning ; Mechanical analysis ; Methods ; Microstructure ; Mining ; Neural networks ; Noise reduction ; Parameters ; Physical properties ; Porosity ; Predictions ; Scanning electron microscopy</subject><ispartof>Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-9</ispartof><rights>Copyright © 2018 Xuebin Qin et al.</rights><rights>Copyright © 2018 Xuebin Qin et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443</citedby><cites>FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443</cites><orcidid>0000-0001-7392-0850 ; 0000-0002-3487-8378 ; 0000-0001-9536-0508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2055948889/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2055948889?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Wang, Yixian</contributor><contributor>Yixian Wang</contributor><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Wang, Pai</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><creatorcontrib>Qin, Xuebin</creatorcontrib><creatorcontrib>Xin, Jie</creatorcontrib><title>Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times</title><title>Advances in civil engineering</title><description>To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstructure parameter software is developed for analyzing the CPB consolidation process, which quantitatively analyzes the mechanical response of CPBs at a microscopic scale. Based on the fuzzy clustering method, CPB microscopic pore images are extracted via digital image processing technology. Microscopic CPB pores are extracted from images via cluster analysis, binarization, and denoising techniques. Then, images are evaluated for porosity, number of pores, average pore width, fractal dimension, weighted probability entropy, and 11 more indicators to quantitatively analyze pores. Thus, the proposed method forms nonlinear relationships between microstructure parameters and mechanical responses based on a deep learning TensorFlow framework under different curing times. Results show that the multiparameter predictive mechanical response at the microscopic scale has a good effect, and the predicted average error is 9.51%. The accuracy of the proposed method is higher than that of the traditional method. Therefore, the proposed method provides a new method to quantitatively analyze the mechanical response strength prediction at a microscale.</description><subject>Backfill</subject><subject>Cement</subject><subject>Cementing</subject><subject>Civil engineering</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Concrete</subject><subject>Consolidation</subject><subject>Crack propagation</subject><subject>Curing</subject><subject>Digital imaging</subject><subject>Drinking water</subject><subject>Engineering</subject><subject>Failure</subject><subject>Fractals</subject><subject>Grain size</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Mechanical analysis</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Mining</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Porosity</subject><subject>Predictions</subject><subject>Scanning electron microscopy</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c1vFCEYBvCJ0cSm7c2zIfGoa_mceTnqtNomNTaxngkDL1vq7rACGzX-87JOU4-eIOTHA3mfrnvB6FvGlDrjlMEZBzGogT3pjlgPwwqolk8f99A_705LiROVcuDAOTvqfn-KLqfi0i46cmOz3WLFTC5-1mxdjWkmdvZkTDlj2aXZx3lNvtSM87rekZuMPi4qBTLiFueKvsWUiuS9dd9C3GyIreQ8hoDtUiXjPh8ibuMWy0n3LNhNwdOH9bj7-uHidrxcXX_-eDW-u145JWhdqQCgvOZBWI898KkHFB497REU6y2zTgrKnOOAHKTnzSJTYgKp9SClOO6ullyf7L3Z5bi1-ZdJNpq_Bymvjc01ug2aaZo0Trpvs0EprJqkpFZJ1OgFIOMt69WStcvp-x5LNfdpn-f2fcOpUloCgG7qzaIOsy0Zw-OrjJpDW-bQlnloq_HXC7-Ls7c_4v_0y0VjMxjsP93sIIT4AwNgnow</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Mei</creator><creator>Wang, Pai</creator><creator>Liu, Lang</creator><creator>Qin, Xuebin</creator><creator>Xin, Jie</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7392-0850</orcidid><orcidid>https://orcid.org/0000-0002-3487-8378</orcidid><orcidid>https://orcid.org/0000-0001-9536-0508</orcidid></search><sort><creationdate>20180101</creationdate><title>Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times</title><author>Wang, Mei ; Wang, Pai ; Liu, Lang ; Qin, Xuebin ; Xin, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Backfill</topic><topic>Cement</topic><topic>Cementing</topic><topic>Civil engineering</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Concrete</topic><topic>Consolidation</topic><topic>Crack propagation</topic><topic>Curing</topic><topic>Digital imaging</topic><topic>Drinking water</topic><topic>Engineering</topic><topic>Failure</topic><topic>Fractals</topic><topic>Grain size</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Mechanical analysis</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Mining</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Porosity</topic><topic>Predictions</topic><topic>Scanning electron microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Wang, Pai</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><creatorcontrib>Qin, Xuebin</creatorcontrib><creatorcontrib>Xin, Jie</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mei</au><au>Wang, Pai</au><au>Liu, Lang</au><au>Qin, Xuebin</au><au>Xin, Jie</au><au>Wang, Yixian</au><au>Yixian Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times</atitle><jtitle>Advances in civil engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstructure parameter software is developed for analyzing the CPB consolidation process, which quantitatively analyzes the mechanical response of CPBs at a microscopic scale. Based on the fuzzy clustering method, CPB microscopic pore images are extracted via digital image processing technology. Microscopic CPB pores are extracted from images via cluster analysis, binarization, and denoising techniques. Then, images are evaluated for porosity, number of pores, average pore width, fractal dimension, weighted probability entropy, and 11 more indicators to quantitatively analyze pores. Thus, the proposed method forms nonlinear relationships between microstructure parameters and mechanical responses based on a deep learning TensorFlow framework under different curing times. Results show that the multiparameter predictive mechanical response at the microscopic scale has a good effect, and the predicted average error is 9.51%. The accuracy of the proposed method is higher than that of the traditional method. Therefore, the proposed method provides a new method to quantitatively analyze the mechanical response strength prediction at a microscale.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/2837571</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7392-0850</orcidid><orcidid>https://orcid.org/0000-0002-3487-8378</orcidid><orcidid>https://orcid.org/0000-0001-9536-0508</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8086 |
ispartof | Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-9 |
issn | 1687-8086 1687-8094 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bbb9eb96221e43a5b440a54e9ed38e12 |
source | Wiley-Blackwell Open Access Titles; Publicly Available Content Database |
subjects | Backfill Cement Cementing Civil engineering Cluster analysis Clustering Concrete Consolidation Crack propagation Curing Digital imaging Drinking water Engineering Failure Fractals Grain size Image processing Machine learning Mechanical analysis Methods Microstructure Mining Neural networks Noise reduction Parameters Physical properties Porosity Predictions Scanning electron microscopy |
title | Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20Parameter%20Extraction%20and%20Corresponding%20Strength%20Prediction%20of%20Cemented%20Paste%20Backfill%20at%20Different%20Curing%20Times&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Wang,%20Mei&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2018/2837571&rft_dat=%3Cproquest_doaj_%3E2055948889%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2055948889&rft_id=info:pmid/&rfr_iscdi=true |