Loading…

Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times

To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstruc...

Full description

Saved in:
Bibliographic Details
Published in:Advances in civil engineering 2018-01, Vol.2018 (2018), p.1-9
Main Authors: Wang, Mei, Wang, Pai, Liu, Lang, Qin, Xuebin, Xin, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443
cites cdi_FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443
container_end_page 9
container_issue 2018
container_start_page 1
container_title Advances in civil engineering
container_volume 2018
creator Wang, Mei
Wang, Pai
Liu, Lang
Qin, Xuebin
Xin, Jie
description To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstructure parameter software is developed for analyzing the CPB consolidation process, which quantitatively analyzes the mechanical response of CPBs at a microscopic scale. Based on the fuzzy clustering method, CPB microscopic pore images are extracted via digital image processing technology. Microscopic CPB pores are extracted from images via cluster analysis, binarization, and denoising techniques. Then, images are evaluated for porosity, number of pores, average pore width, fractal dimension, weighted probability entropy, and 11 more indicators to quantitatively analyze pores. Thus, the proposed method forms nonlinear relationships between microstructure parameters and mechanical responses based on a deep learning TensorFlow framework under different curing times. Results show that the multiparameter predictive mechanical response at the microscopic scale has a good effect, and the predicted average error is 9.51%. The accuracy of the proposed method is higher than that of the traditional method. Therefore, the proposed method provides a new method to quantitatively analyze the mechanical response strength prediction at a microscale.
doi_str_mv 10.1155/2018/2837571
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bbb9eb96221e43a5b440a54e9ed38e12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bbb9eb96221e43a5b440a54e9ed38e12</doaj_id><sourcerecordid>2055948889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443</originalsourceid><addsrcrecordid>eNqF0c1vFCEYBvCJ0cSm7c2zIfGoa_mceTnqtNomNTaxngkDL1vq7rACGzX-87JOU4-eIOTHA3mfrnvB6FvGlDrjlMEZBzGogT3pjlgPwwqolk8f99A_705LiROVcuDAOTvqfn-KLqfi0i46cmOz3WLFTC5-1mxdjWkmdvZkTDlj2aXZx3lNvtSM87rekZuMPi4qBTLiFueKvsWUiuS9dd9C3GyIreQ8hoDtUiXjPh8ibuMWy0n3LNhNwdOH9bj7-uHidrxcXX_-eDW-u145JWhdqQCgvOZBWI898KkHFB497REU6y2zTgrKnOOAHKTnzSJTYgKp9SClOO6ullyf7L3Z5bi1-ZdJNpq_Bymvjc01ug2aaZo0Trpvs0EprJqkpFZJ1OgFIOMt69WStcvp-x5LNfdpn-f2fcOpUloCgG7qzaIOsy0Zw-OrjJpDW-bQlnloq_HXC7-Ls7c_4v_0y0VjMxjsP93sIIT4AwNgnow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055948889</pqid></control><display><type>article</type><title>Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times</title><source>Wiley-Blackwell Open Access Titles</source><source>Publicly Available Content Database</source><creator>Wang, Mei ; Wang, Pai ; Liu, Lang ; Qin, Xuebin ; Xin, Jie</creator><contributor>Wang, Yixian ; Yixian Wang</contributor><creatorcontrib>Wang, Mei ; Wang, Pai ; Liu, Lang ; Qin, Xuebin ; Xin, Jie ; Wang, Yixian ; Yixian Wang</creatorcontrib><description>To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstructure parameter software is developed for analyzing the CPB consolidation process, which quantitatively analyzes the mechanical response of CPBs at a microscopic scale. Based on the fuzzy clustering method, CPB microscopic pore images are extracted via digital image processing technology. Microscopic CPB pores are extracted from images via cluster analysis, binarization, and denoising techniques. Then, images are evaluated for porosity, number of pores, average pore width, fractal dimension, weighted probability entropy, and 11 more indicators to quantitatively analyze pores. Thus, the proposed method forms nonlinear relationships between microstructure parameters and mechanical responses based on a deep learning TensorFlow framework under different curing times. Results show that the multiparameter predictive mechanical response at the microscopic scale has a good effect, and the predicted average error is 9.51%. The accuracy of the proposed method is higher than that of the traditional method. Therefore, the proposed method provides a new method to quantitatively analyze the mechanical response strength prediction at a microscale.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2018/2837571</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Backfill ; Cement ; Cementing ; Civil engineering ; Cluster analysis ; Clustering ; Concrete ; Consolidation ; Crack propagation ; Curing ; Digital imaging ; Drinking water ; Engineering ; Failure ; Fractals ; Grain size ; Image processing ; Machine learning ; Mechanical analysis ; Methods ; Microstructure ; Mining ; Neural networks ; Noise reduction ; Parameters ; Physical properties ; Porosity ; Predictions ; Scanning electron microscopy</subject><ispartof>Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-9</ispartof><rights>Copyright © 2018 Xuebin Qin et al.</rights><rights>Copyright © 2018 Xuebin Qin et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443</citedby><cites>FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443</cites><orcidid>0000-0001-7392-0850 ; 0000-0002-3487-8378 ; 0000-0001-9536-0508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2055948889/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2055948889?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Wang, Yixian</contributor><contributor>Yixian Wang</contributor><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Wang, Pai</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><creatorcontrib>Qin, Xuebin</creatorcontrib><creatorcontrib>Xin, Jie</creatorcontrib><title>Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times</title><title>Advances in civil engineering</title><description>To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstructure parameter software is developed for analyzing the CPB consolidation process, which quantitatively analyzes the mechanical response of CPBs at a microscopic scale. Based on the fuzzy clustering method, CPB microscopic pore images are extracted via digital image processing technology. Microscopic CPB pores are extracted from images via cluster analysis, binarization, and denoising techniques. Then, images are evaluated for porosity, number of pores, average pore width, fractal dimension, weighted probability entropy, and 11 more indicators to quantitatively analyze pores. Thus, the proposed method forms nonlinear relationships between microstructure parameters and mechanical responses based on a deep learning TensorFlow framework under different curing times. Results show that the multiparameter predictive mechanical response at the microscopic scale has a good effect, and the predicted average error is 9.51%. The accuracy of the proposed method is higher than that of the traditional method. Therefore, the proposed method provides a new method to quantitatively analyze the mechanical response strength prediction at a microscale.</description><subject>Backfill</subject><subject>Cement</subject><subject>Cementing</subject><subject>Civil engineering</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Concrete</subject><subject>Consolidation</subject><subject>Crack propagation</subject><subject>Curing</subject><subject>Digital imaging</subject><subject>Drinking water</subject><subject>Engineering</subject><subject>Failure</subject><subject>Fractals</subject><subject>Grain size</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Mechanical analysis</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Mining</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Porosity</subject><subject>Predictions</subject><subject>Scanning electron microscopy</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c1vFCEYBvCJ0cSm7c2zIfGoa_mceTnqtNomNTaxngkDL1vq7rACGzX-87JOU4-eIOTHA3mfrnvB6FvGlDrjlMEZBzGogT3pjlgPwwqolk8f99A_705LiROVcuDAOTvqfn-KLqfi0i46cmOz3WLFTC5-1mxdjWkmdvZkTDlj2aXZx3lNvtSM87rekZuMPi4qBTLiFueKvsWUiuS9dd9C3GyIreQ8hoDtUiXjPh8ibuMWy0n3LNhNwdOH9bj7-uHidrxcXX_-eDW-u145JWhdqQCgvOZBWI898KkHFB497REU6y2zTgrKnOOAHKTnzSJTYgKp9SClOO6ullyf7L3Z5bi1-ZdJNpq_Bymvjc01ug2aaZo0Trpvs0EprJqkpFZJ1OgFIOMt69WStcvp-x5LNfdpn-f2fcOpUloCgG7qzaIOsy0Zw-OrjJpDW-bQlnloq_HXC7-Ls7c_4v_0y0VjMxjsP93sIIT4AwNgnow</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Mei</creator><creator>Wang, Pai</creator><creator>Liu, Lang</creator><creator>Qin, Xuebin</creator><creator>Xin, Jie</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7392-0850</orcidid><orcidid>https://orcid.org/0000-0002-3487-8378</orcidid><orcidid>https://orcid.org/0000-0001-9536-0508</orcidid></search><sort><creationdate>20180101</creationdate><title>Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times</title><author>Wang, Mei ; Wang, Pai ; Liu, Lang ; Qin, Xuebin ; Xin, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Backfill</topic><topic>Cement</topic><topic>Cementing</topic><topic>Civil engineering</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Concrete</topic><topic>Consolidation</topic><topic>Crack propagation</topic><topic>Curing</topic><topic>Digital imaging</topic><topic>Drinking water</topic><topic>Engineering</topic><topic>Failure</topic><topic>Fractals</topic><topic>Grain size</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Mechanical analysis</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Mining</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Porosity</topic><topic>Predictions</topic><topic>Scanning electron microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Wang, Pai</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><creatorcontrib>Qin, Xuebin</creatorcontrib><creatorcontrib>Xin, Jie</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mei</au><au>Wang, Pai</au><au>Liu, Lang</au><au>Qin, Xuebin</au><au>Xin, Jie</au><au>Wang, Yixian</au><au>Yixian Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times</atitle><jtitle>Advances in civil engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>To accurately and intuitively study the influence of microscopic parameters and mechanical responses of the consolidation process of cemented paste backfill (CPB), a method is proposed for characterizing its geometric and morphological characteristics and its mechanical response. A set of microstructure parameter software is developed for analyzing the CPB consolidation process, which quantitatively analyzes the mechanical response of CPBs at a microscopic scale. Based on the fuzzy clustering method, CPB microscopic pore images are extracted via digital image processing technology. Microscopic CPB pores are extracted from images via cluster analysis, binarization, and denoising techniques. Then, images are evaluated for porosity, number of pores, average pore width, fractal dimension, weighted probability entropy, and 11 more indicators to quantitatively analyze pores. Thus, the proposed method forms nonlinear relationships between microstructure parameters and mechanical responses based on a deep learning TensorFlow framework under different curing times. Results show that the multiparameter predictive mechanical response at the microscopic scale has a good effect, and the predicted average error is 9.51%. The accuracy of the proposed method is higher than that of the traditional method. Therefore, the proposed method provides a new method to quantitatively analyze the mechanical response strength prediction at a microscale.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/2837571</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7392-0850</orcidid><orcidid>https://orcid.org/0000-0002-3487-8378</orcidid><orcidid>https://orcid.org/0000-0001-9536-0508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8086
ispartof Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-9
issn 1687-8086
1687-8094
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bbb9eb96221e43a5b440a54e9ed38e12
source Wiley-Blackwell Open Access Titles; Publicly Available Content Database
subjects Backfill
Cement
Cementing
Civil engineering
Cluster analysis
Clustering
Concrete
Consolidation
Crack propagation
Curing
Digital imaging
Drinking water
Engineering
Failure
Fractals
Grain size
Image processing
Machine learning
Mechanical analysis
Methods
Microstructure
Mining
Neural networks
Noise reduction
Parameters
Physical properties
Porosity
Predictions
Scanning electron microscopy
title Microscopic Parameter Extraction and Corresponding Strength Prediction of Cemented Paste Backfill at Different Curing Times
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20Parameter%20Extraction%20and%20Corresponding%20Strength%20Prediction%20of%20Cemented%20Paste%20Backfill%20at%20Different%20Curing%20Times&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Wang,%20Mei&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2018/2837571&rft_dat=%3Cproquest_doaj_%3E2055948889%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-5f885d92f3ade682b68e3ded06e8516a1ac4301cc28e284d2d92e153b84997443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2055948889&rft_id=info:pmid/&rfr_iscdi=true