Loading…

Semantic Segmentation of a Printed Circuit Board for Component Recognition Based on Depth Images

Locating and identifying the components mounted on a printed circuit board (PCB) based on machine vision is an important and challenging problem for automated PCB inspection and automated PCB recycling. In this paper, we propose a PCB semantic segmentation method based on depth images that segments...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (18), p.5318
Main Authors: Li, Dongnian, Li, Changming, Chen, Chengjun, Zhao, Zhengxu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Locating and identifying the components mounted on a printed circuit board (PCB) based on machine vision is an important and challenging problem for automated PCB inspection and automated PCB recycling. In this paper, we propose a PCB semantic segmentation method based on depth images that segments and recognizes components in the PCB through pixel classification. The image training set for the PCB was automatically synthesized with graphic rendering. Based on a series of concentric circles centered at the given depth pixel, we extracted the depth difference features from the depth images in the training set to train a random forest pixel classifier. By using the constructed random forest pixel classifier, we performed semantic segmentation for the PCB to segment and recognize components in the PCB through pixel classification. Experiments on both synthetic and real test sets were conducted to verify the effectiveness of the proposed method. The experimental results demonstrate that our method can segment and recognize most of the components from a real depth image of the PCB. Our method is immune to illumination changes and can be implemented in parallel on a GPU.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20185318