Loading…
A novel method to detect bacterial resistance to disinfectants
In clinical practice, the important hygienic prevention of bacterial pathogen spread is disinfection of potentially contaminated area. Benzalkonium bromide and chlorhexidine acetate are commonly used disinfectants with a broad spectrum of anti-microbial effect. It is vital to inhibit the spread of p...
Saved in:
Published in: | Genes & diseases 2017-09, Vol.4 (3), p.163-169 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In clinical practice, the important hygienic prevention of bacterial pathogen spread is disinfection of potentially contaminated area. Benzalkonium bromide and chlorhexidine acetate are commonly used disinfectants with a broad spectrum of anti-microbial effect. It is vital to inhibit the spread of pathogen in hospital. However, a large number of pathogens with the decreased antiseptic susceptibility have been isolated from clinical samples which showed an increased minimal inhibitory concentration (MIC) against those antiseptics. These resistant pathogens are the major causes for nosocomial cross-infections in hospital. The present study demonstrated the utility of Oxford plate assay system in determining the potential disinfectant resistance of bacteria. The microbiological assay is based on the inhibitory effect of tested disinfectants upon the strains of Staphylococcus aureus and Escherichia coli. Statistical analysis of the bioassay results indicated the linear correlation (r = 0.87–0.99, P |
---|---|
ISSN: | 2352-3042 2352-4820 2352-3042 |
DOI: | 10.1016/j.gendis.2017.07.001 |