Loading…
pyCM: An open-source computational framework for residual stress analysis employing the Contour Method
The contour method for assessing residual stress is a widely accessible method in terms of the equipment required and experimental protocol. However, its application is hampered by the absence of a common computational framework to reconstruct the residual stress field and visualise the final result...
Saved in:
Published in: | SoftwareX 2020-01, Vol.11, p.100458, Article 100458 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The contour method for assessing residual stress is a widely accessible method in terms of the equipment required and experimental protocol. However, its application is hampered by the absence of a common computational framework to reconstruct the residual stress field and visualise the final result. In order to help regularise the analysis an open-source reconstruction package is presented: the Python Contour Method (pyCM). This package comprises a graphical user interface framework for the purposes for analysing and resolving stresses from experimental contour method data. The code requires no proprietary software and is expandable and fully transparent, enabling users to evaluate it and extend it to develop best practice. The framework is presented and compared against results stemming from a widely published edge-welded beam dataset produced as part of the EC 5th Framework ENPOWER project to highlight applicability. |
---|---|
ISSN: | 2352-7110 2352-7110 |
DOI: | 10.1016/j.softx.2020.100458 |