Loading…

Meiosis I progression in spermatogenesis requires a type of testis-specific 20S core proteasome

Spermatogenesis is tightly regulated by ubiquitination and proteasomal degradation, especially during spermiogenesis, in which histones are replaced by protamine. However, the functions of proteasomal activity in meiosis I and II remain elusive. Here, we show that PSMA8-associated proteasomes are es...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-07, Vol.10 (1), p.3387-11, Article 3387
Main Authors: Zhang, Qianting, Ji, Shu-Yan, Busayavalasa, Kiran, Shao, Jingchen, Yu, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spermatogenesis is tightly regulated by ubiquitination and proteasomal degradation, especially during spermiogenesis, in which histones are replaced by protamine. However, the functions of proteasomal activity in meiosis I and II remain elusive. Here, we show that PSMA8-associated proteasomes are essential for the degradation of meiotic proteins and the progression of meiosis I during spermatogenesis. PSMA8 is expressed in spermatocytes from the pachytene stage, and assembles a type of testis-specific core proteasome. Deletion of PSMA8 decreases the abundance of proteasome in testes. Meiotic proteins that are normally degraded at late prophase I, such as RAD51 and RPA1, remain stable in PSMA8-deleted spermatocytes. Moreover, PSMA8-null spermatocytes exhibit delayed M-phase entry and are finally arrested at this stage, resulting in male infertility. However, PSMA8 is neither expressed nor required for female meiotic progression. Thus, meiosis I progression in spermatogenesis, particularly entry into and exit from M-phase, requires the proteasomal activity of PSMA8-associated proteasomes. Proteasomal degradation is required for the progression of spermatogenesis. Here the authors demonstrate that deletion of the testis-specific proteasome subunit PMSA8 leads to stabilization of the meiotic proteins RAD51 and RPA1 and a spermatogenic block at M-phase of meiosis I.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-11346-y