Loading…

Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2

The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple- Q chiral ordering can emerge in metallic TLAFs, representing the short wavelen...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-12, Vol.14 (1), p.8346-8346, Article 8346
Main Authors: Park, Pyeongjae, Cho, Woonghee, Kim, Chaebin, An, Yeochan, Kang, Yoon-Gu, Avdeev, Maxim, Sibille, Romain, Iida, Kazuki, Kajimoto, Ryoichi, Lee, Ki Hoon, Ju, Woori, Cho, En-Jin, Noh, Han-Jin, Han, Myung Joon, Zhang, Shang-Shun, Batista, Cristian D., Park, Je-Geun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583
cites cdi_FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583
container_end_page 8346
container_issue 1
container_start_page 8346
container_title Nature communications
container_volume 14
creator Park, Pyeongjae
Cho, Woonghee
Kim, Chaebin
An, Yeochan
Kang, Yoon-Gu
Avdeev, Maxim
Sibille, Romain
Iida, Kazuki
Kajimoto, Ryoichi
Lee, Ki Hoon
Ju, Woori
Cho, En-Jin
Noh, Han-Jin
Han, Myung Joon
Zhang, Shang-Shun
Batista, Cristian D.
Park, Je-Geun
description The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple- Q chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co 1/3 TaS 2 as the first example of tetrahedral triple- Q magnetic ordering with the associated topological Hall effect (non-zero σ xy ( H  = 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple- Q state. Skyrmion crystals, where skyrmions are arranged close packed in a triangular lattice arise due to the superposition of three magnetic spin spirals, each with a distinct wave vector, Q. Such skrymion crystals have been found in a diverse array of materials. Here, Park et al find a short wavelength (or dense skyrmion) limit of this skyrmion crystal structure in Co1/3TaS2, a metallic triangular lattice antiferromagnet, in the form of a triple Q magnetic ordering, with four magnetic sublattices.’
doi_str_mv 10.1038/s41467-023-43853-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bbe2af87cfed4fb390a6c8c6674f9a63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bbe2af87cfed4fb390a6c8c6674f9a63</doaj_id><sourcerecordid>2902940364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583</originalsourceid><addsrcrecordid>eNp9kk-L1TAUxYsoOIzzBVwF3bipk39tk6U81BkYEPG5DrfpTV8efU1NUmHWfnHzXkXFhVkkl-TcH9yTU1UvGX3LqFC3STLZdjXlopZCNWV_Ul1xKlnNOi6e_lU_r25SOtKyhGZKyqvqxx5zhAMOESaSo18mrD-TE4wzZm9JiANGP48E5oFMEEckaQlzhhnDmsgdTBOxYR5Wm_13nx-Jn0k-IDlhLk8FUJAwj2tpLYjsHcYYNjrZBXYr9vCFv6ieOZgS3vw6r6uvH97vd3f1w6eP97t3D7WVSufaIWWdVla3UqlWNJ3jjFoUAlzPh05ISa10QqOy4BoGHe2gb2wDVkndNEpcV_cbdwhwNEv0J4iPJoA3l4sQRwOxTD2h6Xvk4FRnHQ7S9UJTaK2ybdtJp6EVhfVqY4WUvUnWZ7SH4sSMNhsui9dcF9GbTbTE8G3FlM3JJ4vTtNlnuKZcSypaWaSv_5EewxrnYsdFxTqmGSsqvqlsDClFdL-nYNScs2C2LJiSBXPJgjmjxdaUlvNXYvyD_k_XT0HQt1g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902171911</pqid></control><display><type>article</type><title>Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2</title><source>Nature_系列刊</source><source>PubMed Central Free</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Park, Pyeongjae ; Cho, Woonghee ; Kim, Chaebin ; An, Yeochan ; Kang, Yoon-Gu ; Avdeev, Maxim ; Sibille, Romain ; Iida, Kazuki ; Kajimoto, Ryoichi ; Lee, Ki Hoon ; Ju, Woori ; Cho, En-Jin ; Noh, Han-Jin ; Han, Myung Joon ; Zhang, Shang-Shun ; Batista, Cristian D. ; Park, Je-Geun</creator><creatorcontrib>Park, Pyeongjae ; Cho, Woonghee ; Kim, Chaebin ; An, Yeochan ; Kang, Yoon-Gu ; Avdeev, Maxim ; Sibille, Romain ; Iida, Kazuki ; Kajimoto, Ryoichi ; Lee, Ki Hoon ; Ju, Woori ; Cho, En-Jin ; Noh, Han-Jin ; Han, Myung Joon ; Zhang, Shang-Shun ; Batista, Cristian D. ; Park, Je-Geun ; Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><description>The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple- Q chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co 1/3 TaS 2 as the first example of tetrahedral triple- Q magnetic ordering with the associated topological Hall effect (non-zero σ xy ( H  = 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple- Q state. Skyrmion crystals, where skyrmions are arranged close packed in a triangular lattice arise due to the superposition of three magnetic spin spirals, each with a distinct wave vector, Q. Such skrymion crystals have been found in a diverse array of materials. Here, Park et al find a short wavelength (or dense skyrmion) limit of this skyrmion crystal structure in Co1/3TaS2, a metallic triangular lattice antiferromagnet, in the form of a triple Q magnetic ordering, with four magnetic sublattices.’</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-43853-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/997 ; 639/766/119/997 ; Antiferromagnetism ; Crystal lattices ; Crystal structure ; Crystals ; Electronic structure ; Frustrated magnetism ; Hall effect ; Humanities and Social Sciences ; Hypothetical particles ; Inelastic scattering ; Insulation ; Magnetism ; multidisciplinary ; Neutron scattering ; Neutrons ; Nuclear cross sections ; Particle theory ; Photoelectric emission ; Scattering cross sections ; Science ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Spectroscopy ; Structure factor ; Wavelength</subject><ispartof>Nature communications, 2023-12, Vol.14 (1), p.8346-8346, Article 8346</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583</citedby><cites>FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583</cites><orcidid>0000-0002-5246-1779 ; 0000-0002-9282-7130 ; 0000-0003-2366-5809 ; 0000-0002-8089-7991 ; 0000-0001-6360-7262 ; 0000-0003-1667-3667 ; 0000-0003-4845-5947 ; 0000-0001-9989-9965 ; 0000-0002-1779-4607 ; 0000-0002-3930-4226 ; 0000-0001-5392-7756 ; 0000000316673667 ; 0000000199899965 ; 0000000239304226 ; 0000000153927756 ; 0000000323665809 ; 0000000252461779 ; 0000000292827130 ; 0000000348455947 ; 0000000280897991 ; 0000000163607262 ; 0000000217794607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2902171911/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2902171911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2472329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Pyeongjae</creatorcontrib><creatorcontrib>Cho, Woonghee</creatorcontrib><creatorcontrib>Kim, Chaebin</creatorcontrib><creatorcontrib>An, Yeochan</creatorcontrib><creatorcontrib>Kang, Yoon-Gu</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Sibille, Romain</creatorcontrib><creatorcontrib>Iida, Kazuki</creatorcontrib><creatorcontrib>Kajimoto, Ryoichi</creatorcontrib><creatorcontrib>Lee, Ki Hoon</creatorcontrib><creatorcontrib>Ju, Woori</creatorcontrib><creatorcontrib>Cho, En-Jin</creatorcontrib><creatorcontrib>Noh, Han-Jin</creatorcontrib><creatorcontrib>Han, Myung Joon</creatorcontrib><creatorcontrib>Zhang, Shang-Shun</creatorcontrib><creatorcontrib>Batista, Cristian D.</creatorcontrib><creatorcontrib>Park, Je-Geun</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><title>Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple- Q chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co 1/3 TaS 2 as the first example of tetrahedral triple- Q magnetic ordering with the associated topological Hall effect (non-zero σ xy ( H  = 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple- Q state. Skyrmion crystals, where skyrmions are arranged close packed in a triangular lattice arise due to the superposition of three magnetic spin spirals, each with a distinct wave vector, Q. Such skrymion crystals have been found in a diverse array of materials. Here, Park et al find a short wavelength (or dense skyrmion) limit of this skyrmion crystal structure in Co1/3TaS2, a metallic triangular lattice antiferromagnet, in the form of a triple Q magnetic ordering, with four magnetic sublattices.’</description><subject>639/301/119/997</subject><subject>639/766/119/997</subject><subject>Antiferromagnetism</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Electronic structure</subject><subject>Frustrated magnetism</subject><subject>Hall effect</subject><subject>Humanities and Social Sciences</subject><subject>Hypothetical particles</subject><subject>Inelastic scattering</subject><subject>Insulation</subject><subject>Magnetism</subject><subject>multidisciplinary</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Nuclear cross sections</subject><subject>Particle theory</subject><subject>Photoelectric emission</subject><subject>Scattering cross sections</subject><subject>Science</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy</subject><subject>Structure factor</subject><subject>Wavelength</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk-L1TAUxYsoOIzzBVwF3bipk39tk6U81BkYEPG5DrfpTV8efU1NUmHWfnHzXkXFhVkkl-TcH9yTU1UvGX3LqFC3STLZdjXlopZCNWV_Ul1xKlnNOi6e_lU_r25SOtKyhGZKyqvqxx5zhAMOESaSo18mrD-TE4wzZm9JiANGP48E5oFMEEckaQlzhhnDmsgdTBOxYR5Wm_13nx-Jn0k-IDlhLk8FUJAwj2tpLYjsHcYYNjrZBXYr9vCFv6ieOZgS3vw6r6uvH97vd3f1w6eP97t3D7WVSufaIWWdVla3UqlWNJ3jjFoUAlzPh05ISa10QqOy4BoGHe2gb2wDVkndNEpcV_cbdwhwNEv0J4iPJoA3l4sQRwOxTD2h6Xvk4FRnHQ7S9UJTaK2ybdtJp6EVhfVqY4WUvUnWZ7SH4sSMNhsui9dcF9GbTbTE8G3FlM3JJ4vTtNlnuKZcSypaWaSv_5EewxrnYsdFxTqmGSsqvqlsDClFdL-nYNScs2C2LJiSBXPJgjmjxdaUlvNXYvyD_k_XT0HQt1g</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Park, Pyeongjae</creator><creator>Cho, Woonghee</creator><creator>Kim, Chaebin</creator><creator>An, Yeochan</creator><creator>Kang, Yoon-Gu</creator><creator>Avdeev, Maxim</creator><creator>Sibille, Romain</creator><creator>Iida, Kazuki</creator><creator>Kajimoto, Ryoichi</creator><creator>Lee, Ki Hoon</creator><creator>Ju, Woori</creator><creator>Cho, En-Jin</creator><creator>Noh, Han-Jin</creator><creator>Han, Myung Joon</creator><creator>Zhang, Shang-Shun</creator><creator>Batista, Cristian D.</creator><creator>Park, Je-Geun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5246-1779</orcidid><orcidid>https://orcid.org/0000-0002-9282-7130</orcidid><orcidid>https://orcid.org/0000-0003-2366-5809</orcidid><orcidid>https://orcid.org/0000-0002-8089-7991</orcidid><orcidid>https://orcid.org/0000-0001-6360-7262</orcidid><orcidid>https://orcid.org/0000-0003-1667-3667</orcidid><orcidid>https://orcid.org/0000-0003-4845-5947</orcidid><orcidid>https://orcid.org/0000-0001-9989-9965</orcidid><orcidid>https://orcid.org/0000-0002-1779-4607</orcidid><orcidid>https://orcid.org/0000-0002-3930-4226</orcidid><orcidid>https://orcid.org/0000-0001-5392-7756</orcidid><orcidid>https://orcid.org/0000000316673667</orcidid><orcidid>https://orcid.org/0000000199899965</orcidid><orcidid>https://orcid.org/0000000239304226</orcidid><orcidid>https://orcid.org/0000000153927756</orcidid><orcidid>https://orcid.org/0000000323665809</orcidid><orcidid>https://orcid.org/0000000252461779</orcidid><orcidid>https://orcid.org/0000000292827130</orcidid><orcidid>https://orcid.org/0000000348455947</orcidid><orcidid>https://orcid.org/0000000280897991</orcidid><orcidid>https://orcid.org/0000000163607262</orcidid><orcidid>https://orcid.org/0000000217794607</orcidid></search><sort><creationdate>20231215</creationdate><title>Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2</title><author>Park, Pyeongjae ; Cho, Woonghee ; Kim, Chaebin ; An, Yeochan ; Kang, Yoon-Gu ; Avdeev, Maxim ; Sibille, Romain ; Iida, Kazuki ; Kajimoto, Ryoichi ; Lee, Ki Hoon ; Ju, Woori ; Cho, En-Jin ; Noh, Han-Jin ; Han, Myung Joon ; Zhang, Shang-Shun ; Batista, Cristian D. ; Park, Je-Geun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/119/997</topic><topic>639/766/119/997</topic><topic>Antiferromagnetism</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Electronic structure</topic><topic>Frustrated magnetism</topic><topic>Hall effect</topic><topic>Humanities and Social Sciences</topic><topic>Hypothetical particles</topic><topic>Inelastic scattering</topic><topic>Insulation</topic><topic>Magnetism</topic><topic>multidisciplinary</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Nuclear cross sections</topic><topic>Particle theory</topic><topic>Photoelectric emission</topic><topic>Scattering cross sections</topic><topic>Science</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy</topic><topic>Structure factor</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Pyeongjae</creatorcontrib><creatorcontrib>Cho, Woonghee</creatorcontrib><creatorcontrib>Kim, Chaebin</creatorcontrib><creatorcontrib>An, Yeochan</creatorcontrib><creatorcontrib>Kang, Yoon-Gu</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Sibille, Romain</creatorcontrib><creatorcontrib>Iida, Kazuki</creatorcontrib><creatorcontrib>Kajimoto, Ryoichi</creatorcontrib><creatorcontrib>Lee, Ki Hoon</creatorcontrib><creatorcontrib>Ju, Woori</creatorcontrib><creatorcontrib>Cho, En-Jin</creatorcontrib><creatorcontrib>Noh, Han-Jin</creatorcontrib><creatorcontrib>Han, Myung Joon</creatorcontrib><creatorcontrib>Zhang, Shang-Shun</creatorcontrib><creatorcontrib>Batista, Cristian D.</creatorcontrib><creatorcontrib>Park, Je-Geun</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Pyeongjae</au><au>Cho, Woonghee</au><au>Kim, Chaebin</au><au>An, Yeochan</au><au>Kang, Yoon-Gu</au><au>Avdeev, Maxim</au><au>Sibille, Romain</au><au>Iida, Kazuki</au><au>Kajimoto, Ryoichi</au><au>Lee, Ki Hoon</au><au>Ju, Woori</au><au>Cho, En-Jin</au><au>Noh, Han-Jin</au><au>Han, Myung Joon</au><au>Zhang, Shang-Shun</au><au>Batista, Cristian D.</au><au>Park, Je-Geun</au><aucorp>Univ. of Tennessee, Knoxville, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-12-15</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>8346</spage><epage>8346</epage><pages>8346-8346</pages><artnum>8346</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple- Q chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co 1/3 TaS 2 as the first example of tetrahedral triple- Q magnetic ordering with the associated topological Hall effect (non-zero σ xy ( H  = 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple- Q state. Skyrmion crystals, where skyrmions are arranged close packed in a triangular lattice arise due to the superposition of three magnetic spin spirals, each with a distinct wave vector, Q. Such skrymion crystals have been found in a diverse array of materials. Here, Park et al find a short wavelength (or dense skyrmion) limit of this skyrmion crystal structure in Co1/3TaS2, a metallic triangular lattice antiferromagnet, in the form of a triple Q magnetic ordering, with four magnetic sublattices.’</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41467-023-43853-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5246-1779</orcidid><orcidid>https://orcid.org/0000-0002-9282-7130</orcidid><orcidid>https://orcid.org/0000-0003-2366-5809</orcidid><orcidid>https://orcid.org/0000-0002-8089-7991</orcidid><orcidid>https://orcid.org/0000-0001-6360-7262</orcidid><orcidid>https://orcid.org/0000-0003-1667-3667</orcidid><orcidid>https://orcid.org/0000-0003-4845-5947</orcidid><orcidid>https://orcid.org/0000-0001-9989-9965</orcidid><orcidid>https://orcid.org/0000-0002-1779-4607</orcidid><orcidid>https://orcid.org/0000-0002-3930-4226</orcidid><orcidid>https://orcid.org/0000-0001-5392-7756</orcidid><orcidid>https://orcid.org/0000000316673667</orcidid><orcidid>https://orcid.org/0000000199899965</orcidid><orcidid>https://orcid.org/0000000239304226</orcidid><orcidid>https://orcid.org/0000000153927756</orcidid><orcidid>https://orcid.org/0000000323665809</orcidid><orcidid>https://orcid.org/0000000252461779</orcidid><orcidid>https://orcid.org/0000000292827130</orcidid><orcidid>https://orcid.org/0000000348455947</orcidid><orcidid>https://orcid.org/0000000280897991</orcidid><orcidid>https://orcid.org/0000000163607262</orcidid><orcidid>https://orcid.org/0000000217794607</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-12, Vol.14 (1), p.8346-8346, Article 8346
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bbe2af87cfed4fb390a6c8c6674f9a63
source Nature_系列刊; PubMed Central Free; Springer Nature - nature.com Journals - Fully Open Access; ProQuest Publicly Available Content database
subjects 639/301/119/997
639/766/119/997
Antiferromagnetism
Crystal lattices
Crystal structure
Crystals
Electronic structure
Frustrated magnetism
Hall effect
Humanities and Social Sciences
Hypothetical particles
Inelastic scattering
Insulation
Magnetism
multidisciplinary
Neutron scattering
Neutrons
Nuclear cross sections
Particle theory
Photoelectric emission
Scattering cross sections
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Spectroscopy
Structure factor
Wavelength
title Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tetrahedral%20triple-Q%20magnetic%20ordering%20and%20large%20spontaneous%20Hall%20conductivity%20in%20the%20metallic%20triangular%20antiferromagnet%20Co1/3TaS2&rft.jtitle=Nature%20communications&rft.au=Park,%20Pyeongjae&rft.aucorp=Univ.%20of%20Tennessee,%20Knoxville,%20TN%20(United%20States)&rft.date=2023-12-15&rft.volume=14&rft.issue=1&rft.spage=8346&rft.epage=8346&rft.pages=8346-8346&rft.artnum=8346&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-43853-4&rft_dat=%3Cproquest_doaj_%3E2902940364%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902171911&rft_id=info:pmid/&rfr_iscdi=true