Loading…
Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2
The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple- Q chiral ordering can emerge in metallic TLAFs, representing the short wavelen...
Saved in:
Published in: | Nature communications 2023-12, Vol.14 (1), p.8346-8346, Article 8346 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583 |
---|---|
cites | cdi_FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583 |
container_end_page | 8346 |
container_issue | 1 |
container_start_page | 8346 |
container_title | Nature communications |
container_volume | 14 |
creator | Park, Pyeongjae Cho, Woonghee Kim, Chaebin An, Yeochan Kang, Yoon-Gu Avdeev, Maxim Sibille, Romain Iida, Kazuki Kajimoto, Ryoichi Lee, Ki Hoon Ju, Woori Cho, En-Jin Noh, Han-Jin Han, Myung Joon Zhang, Shang-Shun Batista, Cristian D. Park, Je-Geun |
description | The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-
Q
chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co
1/3
TaS
2
as the first example of tetrahedral triple-
Q
magnetic ordering with the associated topological Hall effect (non-zero
σ
xy
(
H
= 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-
Q
state.
Skyrmion crystals, where skyrmions are arranged close packed in a triangular lattice arise due to the superposition of three magnetic spin spirals, each with a distinct wave vector, Q. Such skrymion crystals have been found in a diverse array of materials. Here, Park et al find a short wavelength (or dense skyrmion) limit of this skyrmion crystal structure in Co1/3TaS2, a metallic triangular lattice antiferromagnet, in the form of a triple Q magnetic ordering, with four magnetic sublattices.’ |
doi_str_mv | 10.1038/s41467-023-43853-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bbe2af87cfed4fb390a6c8c6674f9a63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bbe2af87cfed4fb390a6c8c6674f9a63</doaj_id><sourcerecordid>2902940364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583</originalsourceid><addsrcrecordid>eNp9kk-L1TAUxYsoOIzzBVwF3bipk39tk6U81BkYEPG5DrfpTV8efU1NUmHWfnHzXkXFhVkkl-TcH9yTU1UvGX3LqFC3STLZdjXlopZCNWV_Ul1xKlnNOi6e_lU_r25SOtKyhGZKyqvqxx5zhAMOESaSo18mrD-TE4wzZm9JiANGP48E5oFMEEckaQlzhhnDmsgdTBOxYR5Wm_13nx-Jn0k-IDlhLk8FUJAwj2tpLYjsHcYYNjrZBXYr9vCFv6ieOZgS3vw6r6uvH97vd3f1w6eP97t3D7WVSufaIWWdVla3UqlWNJ3jjFoUAlzPh05ISa10QqOy4BoGHe2gb2wDVkndNEpcV_cbdwhwNEv0J4iPJoA3l4sQRwOxTD2h6Xvk4FRnHQ7S9UJTaK2ybdtJp6EVhfVqY4WUvUnWZ7SH4sSMNhsui9dcF9GbTbTE8G3FlM3JJ4vTtNlnuKZcSypaWaSv_5EewxrnYsdFxTqmGSsqvqlsDClFdL-nYNScs2C2LJiSBXPJgjmjxdaUlvNXYvyD_k_XT0HQt1g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902171911</pqid></control><display><type>article</type><title>Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2</title><source>Nature_系列刊</source><source>PubMed Central Free</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Park, Pyeongjae ; Cho, Woonghee ; Kim, Chaebin ; An, Yeochan ; Kang, Yoon-Gu ; Avdeev, Maxim ; Sibille, Romain ; Iida, Kazuki ; Kajimoto, Ryoichi ; Lee, Ki Hoon ; Ju, Woori ; Cho, En-Jin ; Noh, Han-Jin ; Han, Myung Joon ; Zhang, Shang-Shun ; Batista, Cristian D. ; Park, Je-Geun</creator><creatorcontrib>Park, Pyeongjae ; Cho, Woonghee ; Kim, Chaebin ; An, Yeochan ; Kang, Yoon-Gu ; Avdeev, Maxim ; Sibille, Romain ; Iida, Kazuki ; Kajimoto, Ryoichi ; Lee, Ki Hoon ; Ju, Woori ; Cho, En-Jin ; Noh, Han-Jin ; Han, Myung Joon ; Zhang, Shang-Shun ; Batista, Cristian D. ; Park, Je-Geun ; Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><description>The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-
Q
chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co
1/3
TaS
2
as the first example of tetrahedral triple-
Q
magnetic ordering with the associated topological Hall effect (non-zero
σ
xy
(
H
= 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-
Q
state.
Skyrmion crystals, where skyrmions are arranged close packed in a triangular lattice arise due to the superposition of three magnetic spin spirals, each with a distinct wave vector, Q. Such skrymion crystals have been found in a diverse array of materials. Here, Park et al find a short wavelength (or dense skyrmion) limit of this skyrmion crystal structure in Co1/3TaS2, a metallic triangular lattice antiferromagnet, in the form of a triple Q magnetic ordering, with four magnetic sublattices.’</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-43853-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/997 ; 639/766/119/997 ; Antiferromagnetism ; Crystal lattices ; Crystal structure ; Crystals ; Electronic structure ; Frustrated magnetism ; Hall effect ; Humanities and Social Sciences ; Hypothetical particles ; Inelastic scattering ; Insulation ; Magnetism ; multidisciplinary ; Neutron scattering ; Neutrons ; Nuclear cross sections ; Particle theory ; Photoelectric emission ; Scattering cross sections ; Science ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Spectroscopy ; Structure factor ; Wavelength</subject><ispartof>Nature communications, 2023-12, Vol.14 (1), p.8346-8346, Article 8346</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583</citedby><cites>FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583</cites><orcidid>0000-0002-5246-1779 ; 0000-0002-9282-7130 ; 0000-0003-2366-5809 ; 0000-0002-8089-7991 ; 0000-0001-6360-7262 ; 0000-0003-1667-3667 ; 0000-0003-4845-5947 ; 0000-0001-9989-9965 ; 0000-0002-1779-4607 ; 0000-0002-3930-4226 ; 0000-0001-5392-7756 ; 0000000316673667 ; 0000000199899965 ; 0000000239304226 ; 0000000153927756 ; 0000000323665809 ; 0000000252461779 ; 0000000292827130 ; 0000000348455947 ; 0000000280897991 ; 0000000163607262 ; 0000000217794607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2902171911/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2902171911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2472329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Pyeongjae</creatorcontrib><creatorcontrib>Cho, Woonghee</creatorcontrib><creatorcontrib>Kim, Chaebin</creatorcontrib><creatorcontrib>An, Yeochan</creatorcontrib><creatorcontrib>Kang, Yoon-Gu</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Sibille, Romain</creatorcontrib><creatorcontrib>Iida, Kazuki</creatorcontrib><creatorcontrib>Kajimoto, Ryoichi</creatorcontrib><creatorcontrib>Lee, Ki Hoon</creatorcontrib><creatorcontrib>Ju, Woori</creatorcontrib><creatorcontrib>Cho, En-Jin</creatorcontrib><creatorcontrib>Noh, Han-Jin</creatorcontrib><creatorcontrib>Han, Myung Joon</creatorcontrib><creatorcontrib>Zhang, Shang-Shun</creatorcontrib><creatorcontrib>Batista, Cristian D.</creatorcontrib><creatorcontrib>Park, Je-Geun</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><title>Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-
Q
chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co
1/3
TaS
2
as the first example of tetrahedral triple-
Q
magnetic ordering with the associated topological Hall effect (non-zero
σ
xy
(
H
= 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-
Q
state.
Skyrmion crystals, where skyrmions are arranged close packed in a triangular lattice arise due to the superposition of three magnetic spin spirals, each with a distinct wave vector, Q. Such skrymion crystals have been found in a diverse array of materials. Here, Park et al find a short wavelength (or dense skyrmion) limit of this skyrmion crystal structure in Co1/3TaS2, a metallic triangular lattice antiferromagnet, in the form of a triple Q magnetic ordering, with four magnetic sublattices.’</description><subject>639/301/119/997</subject><subject>639/766/119/997</subject><subject>Antiferromagnetism</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Electronic structure</subject><subject>Frustrated magnetism</subject><subject>Hall effect</subject><subject>Humanities and Social Sciences</subject><subject>Hypothetical particles</subject><subject>Inelastic scattering</subject><subject>Insulation</subject><subject>Magnetism</subject><subject>multidisciplinary</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Nuclear cross sections</subject><subject>Particle theory</subject><subject>Photoelectric emission</subject><subject>Scattering cross sections</subject><subject>Science</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy</subject><subject>Structure factor</subject><subject>Wavelength</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk-L1TAUxYsoOIzzBVwF3bipk39tk6U81BkYEPG5DrfpTV8efU1NUmHWfnHzXkXFhVkkl-TcH9yTU1UvGX3LqFC3STLZdjXlopZCNWV_Ul1xKlnNOi6e_lU_r25SOtKyhGZKyqvqxx5zhAMOESaSo18mrD-TE4wzZm9JiANGP48E5oFMEEckaQlzhhnDmsgdTBOxYR5Wm_13nx-Jn0k-IDlhLk8FUJAwj2tpLYjsHcYYNjrZBXYr9vCFv6ieOZgS3vw6r6uvH97vd3f1w6eP97t3D7WVSufaIWWdVla3UqlWNJ3jjFoUAlzPh05ISa10QqOy4BoGHe2gb2wDVkndNEpcV_cbdwhwNEv0J4iPJoA3l4sQRwOxTD2h6Xvk4FRnHQ7S9UJTaK2ybdtJp6EVhfVqY4WUvUnWZ7SH4sSMNhsui9dcF9GbTbTE8G3FlM3JJ4vTtNlnuKZcSypaWaSv_5EewxrnYsdFxTqmGSsqvqlsDClFdL-nYNScs2C2LJiSBXPJgjmjxdaUlvNXYvyD_k_XT0HQt1g</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Park, Pyeongjae</creator><creator>Cho, Woonghee</creator><creator>Kim, Chaebin</creator><creator>An, Yeochan</creator><creator>Kang, Yoon-Gu</creator><creator>Avdeev, Maxim</creator><creator>Sibille, Romain</creator><creator>Iida, Kazuki</creator><creator>Kajimoto, Ryoichi</creator><creator>Lee, Ki Hoon</creator><creator>Ju, Woori</creator><creator>Cho, En-Jin</creator><creator>Noh, Han-Jin</creator><creator>Han, Myung Joon</creator><creator>Zhang, Shang-Shun</creator><creator>Batista, Cristian D.</creator><creator>Park, Je-Geun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5246-1779</orcidid><orcidid>https://orcid.org/0000-0002-9282-7130</orcidid><orcidid>https://orcid.org/0000-0003-2366-5809</orcidid><orcidid>https://orcid.org/0000-0002-8089-7991</orcidid><orcidid>https://orcid.org/0000-0001-6360-7262</orcidid><orcidid>https://orcid.org/0000-0003-1667-3667</orcidid><orcidid>https://orcid.org/0000-0003-4845-5947</orcidid><orcidid>https://orcid.org/0000-0001-9989-9965</orcidid><orcidid>https://orcid.org/0000-0002-1779-4607</orcidid><orcidid>https://orcid.org/0000-0002-3930-4226</orcidid><orcidid>https://orcid.org/0000-0001-5392-7756</orcidid><orcidid>https://orcid.org/0000000316673667</orcidid><orcidid>https://orcid.org/0000000199899965</orcidid><orcidid>https://orcid.org/0000000239304226</orcidid><orcidid>https://orcid.org/0000000153927756</orcidid><orcidid>https://orcid.org/0000000323665809</orcidid><orcidid>https://orcid.org/0000000252461779</orcidid><orcidid>https://orcid.org/0000000292827130</orcidid><orcidid>https://orcid.org/0000000348455947</orcidid><orcidid>https://orcid.org/0000000280897991</orcidid><orcidid>https://orcid.org/0000000163607262</orcidid><orcidid>https://orcid.org/0000000217794607</orcidid></search><sort><creationdate>20231215</creationdate><title>Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2</title><author>Park, Pyeongjae ; Cho, Woonghee ; Kim, Chaebin ; An, Yeochan ; Kang, Yoon-Gu ; Avdeev, Maxim ; Sibille, Romain ; Iida, Kazuki ; Kajimoto, Ryoichi ; Lee, Ki Hoon ; Ju, Woori ; Cho, En-Jin ; Noh, Han-Jin ; Han, Myung Joon ; Zhang, Shang-Shun ; Batista, Cristian D. ; Park, Je-Geun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/119/997</topic><topic>639/766/119/997</topic><topic>Antiferromagnetism</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Electronic structure</topic><topic>Frustrated magnetism</topic><topic>Hall effect</topic><topic>Humanities and Social Sciences</topic><topic>Hypothetical particles</topic><topic>Inelastic scattering</topic><topic>Insulation</topic><topic>Magnetism</topic><topic>multidisciplinary</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Nuclear cross sections</topic><topic>Particle theory</topic><topic>Photoelectric emission</topic><topic>Scattering cross sections</topic><topic>Science</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy</topic><topic>Structure factor</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Pyeongjae</creatorcontrib><creatorcontrib>Cho, Woonghee</creatorcontrib><creatorcontrib>Kim, Chaebin</creatorcontrib><creatorcontrib>An, Yeochan</creatorcontrib><creatorcontrib>Kang, Yoon-Gu</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Sibille, Romain</creatorcontrib><creatorcontrib>Iida, Kazuki</creatorcontrib><creatorcontrib>Kajimoto, Ryoichi</creatorcontrib><creatorcontrib>Lee, Ki Hoon</creatorcontrib><creatorcontrib>Ju, Woori</creatorcontrib><creatorcontrib>Cho, En-Jin</creatorcontrib><creatorcontrib>Noh, Han-Jin</creatorcontrib><creatorcontrib>Han, Myung Joon</creatorcontrib><creatorcontrib>Zhang, Shang-Shun</creatorcontrib><creatorcontrib>Batista, Cristian D.</creatorcontrib><creatorcontrib>Park, Je-Geun</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Pyeongjae</au><au>Cho, Woonghee</au><au>Kim, Chaebin</au><au>An, Yeochan</au><au>Kang, Yoon-Gu</au><au>Avdeev, Maxim</au><au>Sibille, Romain</au><au>Iida, Kazuki</au><au>Kajimoto, Ryoichi</au><au>Lee, Ki Hoon</au><au>Ju, Woori</au><au>Cho, En-Jin</au><au>Noh, Han-Jin</au><au>Han, Myung Joon</au><au>Zhang, Shang-Shun</au><au>Batista, Cristian D.</au><au>Park, Je-Geun</au><aucorp>Univ. of Tennessee, Knoxville, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-12-15</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>8346</spage><epage>8346</epage><pages>8346-8346</pages><artnum>8346</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-
Q
chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co
1/3
TaS
2
as the first example of tetrahedral triple-
Q
magnetic ordering with the associated topological Hall effect (non-zero
σ
xy
(
H
= 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-
Q
state.
Skyrmion crystals, where skyrmions are arranged close packed in a triangular lattice arise due to the superposition of three magnetic spin spirals, each with a distinct wave vector, Q. Such skrymion crystals have been found in a diverse array of materials. Here, Park et al find a short wavelength (or dense skyrmion) limit of this skyrmion crystal structure in Co1/3TaS2, a metallic triangular lattice antiferromagnet, in the form of a triple Q magnetic ordering, with four magnetic sublattices.’</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41467-023-43853-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5246-1779</orcidid><orcidid>https://orcid.org/0000-0002-9282-7130</orcidid><orcidid>https://orcid.org/0000-0003-2366-5809</orcidid><orcidid>https://orcid.org/0000-0002-8089-7991</orcidid><orcidid>https://orcid.org/0000-0001-6360-7262</orcidid><orcidid>https://orcid.org/0000-0003-1667-3667</orcidid><orcidid>https://orcid.org/0000-0003-4845-5947</orcidid><orcidid>https://orcid.org/0000-0001-9989-9965</orcidid><orcidid>https://orcid.org/0000-0002-1779-4607</orcidid><orcidid>https://orcid.org/0000-0002-3930-4226</orcidid><orcidid>https://orcid.org/0000-0001-5392-7756</orcidid><orcidid>https://orcid.org/0000000316673667</orcidid><orcidid>https://orcid.org/0000000199899965</orcidid><orcidid>https://orcid.org/0000000239304226</orcidid><orcidid>https://orcid.org/0000000153927756</orcidid><orcidid>https://orcid.org/0000000323665809</orcidid><orcidid>https://orcid.org/0000000252461779</orcidid><orcidid>https://orcid.org/0000000292827130</orcidid><orcidid>https://orcid.org/0000000348455947</orcidid><orcidid>https://orcid.org/0000000280897991</orcidid><orcidid>https://orcid.org/0000000163607262</orcidid><orcidid>https://orcid.org/0000000217794607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-12, Vol.14 (1), p.8346-8346, Article 8346 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bbe2af87cfed4fb390a6c8c6674f9a63 |
source | Nature_系列刊; PubMed Central Free; Springer Nature - nature.com Journals - Fully Open Access; ProQuest Publicly Available Content database |
subjects | 639/301/119/997 639/766/119/997 Antiferromagnetism Crystal lattices Crystal structure Crystals Electronic structure Frustrated magnetism Hall effect Humanities and Social Sciences Hypothetical particles Inelastic scattering Insulation Magnetism multidisciplinary Neutron scattering Neutrons Nuclear cross sections Particle theory Photoelectric emission Scattering cross sections Science Science & Technology - Other Topics Science (multidisciplinary) Spectroscopy Structure factor Wavelength |
title | Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tetrahedral%20triple-Q%20magnetic%20ordering%20and%20large%20spontaneous%20Hall%20conductivity%20in%20the%20metallic%20triangular%20antiferromagnet%20Co1/3TaS2&rft.jtitle=Nature%20communications&rft.au=Park,%20Pyeongjae&rft.aucorp=Univ.%20of%20Tennessee,%20Knoxville,%20TN%20(United%20States)&rft.date=2023-12-15&rft.volume=14&rft.issue=1&rft.spage=8346&rft.epage=8346&rft.pages=8346-8346&rft.artnum=8346&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-43853-4&rft_dat=%3Cproquest_doaj_%3E2902940364%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-fe01798c964886357f210ce33afb2d73440c4f39e8caf51a707ab5c5ac8495583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902171911&rft_id=info:pmid/&rfr_iscdi=true |