Loading…
Analytic and Harmonic Univalent Functions
V. Ravichandran 1 and Om P. Ahuja 2 and Rosihan M. Ali 3 1, Department of Mathematics, University of Delhi, Delhi 110 007, India 2, Department of Mathematical Sciences, Kent State University, Burton, OH 44021, USA 3, School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Mala...
Saved in:
Published in: | Abstract and Applied Analysis 2014, Vol.2014, p.100-101-910 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 101-910 |
container_issue | |
container_start_page | 100 |
container_title | Abstract and Applied Analysis |
container_volume | 2014 |
creator | Ravichandran, V. Ahuja, Om P. Ali, Rosihan M. |
description | V. Ravichandran 1 and Om P. Ahuja 2 and Rosihan M. Ali 3 1, Department of Mathematics, University of Delhi, Delhi 110 007, India 2, Department of Mathematical Sciences, Kent State University, Burton, OH 44021, USA 3, School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Received 14 October 2014; Accepted 14 October 2014; 22 December 2014 This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The first of these four papers, "Radius constants for functions with the prescribed coefficient bounds," establishes a coefficient inequality for sense-preserving harmonic functions to compute the bounds for the radius of univalence and radius of full starlikeness (and convexity) of positive order for functions with prescribed coefficient bound on the analytic part; the second one, "On certain subclass of harmonic starlike functions," discusses the geometric properties for a new class of harmonic univalent functions; the third one, "A family of minimal surfaces and univalent planar harmonic mappings," presents a two-parameter family of minimal surfaces constructed by lifting a family of planar harmonic mappings, while the fourth one, "Landau-type theorems for certain biharmonic mappings," proves the Landau-type theorems for biharmonic mappings connected with a linear complex operator. |
doi_str_mv | 10.1155/2014/578214 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bbeaf14de03c49a6acbc5fb953071cc5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426543585</galeid><airiti_id>P20160825001_201412_201609080014_201609080014_100_101_910</airiti_id><doaj_id>oai_doaj_org_article_bbeaf14de03c49a6acbc5fb953071cc5</doaj_id><sourcerecordid>A426543585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4804-7938502ccaa1d4ef35817985091c81c71d55d97d8c985484290d7c4a3775a5e03</originalsourceid><addsrcrecordid>eNqNUcFuEzEQXSGQKIUTPxCJE6BtZ7z22r4RRZRWikQP5GxNbG9xtLGLd1PUv8ebjYp6Avkwnqf3nmbeVNV7hAtEIS4ZIL8UUjHkL6ozbJWsgYN-Wf6gRN00Uryu3gzDDgAayflZ9XEZqX8cg11QdItryvsUS7OJ4YF6H8fF1SHaMaQ4vK1eddQP_t2pnlebq68_Vtf1-vu3m9VyXRNXwGupGyWAWUuEjvuuEQqlLpBGq9BKdEI4LZ2yBeSKMw1OWk6NlIKEh-a8upl9XaKduc9hT_nRJArmCKR8ZyiXgXtvtltPHXJXVJZraslurei2WjQg0VpRvL7MXvc57bwd_cH2wT0zXW3WJ_RUiMggZwK40myy-PBk8evgh9Hs0iGX0AaDLUcFJUZdWBcz666kZkLs0pjJluf8PtgUfRcKvuQtY1ozhv8tYK3gJcJpjs-zwOY0DNl3T1sgmOn4Zjq-mY9f2J9m9s8QHf0O_yDfzmQKOYzh74K3hdWCKlkAHhXIzBHSoGAyeNYgFO9C1AjNH7Sev-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641807449</pqid></control><display><type>article</type><title>Analytic and Harmonic Univalent Functions</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Ravichandran, V. ; Ahuja, Om P. ; Ali, Rosihan M.</creator><creatorcontrib>Ravichandran, V. ; Ahuja, Om P. ; Ali, Rosihan M.</creatorcontrib><description>V. Ravichandran 1 and Om P. Ahuja 2 and Rosihan M. Ali 3 1, Department of Mathematics, University of Delhi, Delhi 110 007, India 2, Department of Mathematical Sciences, Kent State University, Burton, OH 44021, USA 3, School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Received 14 October 2014; Accepted 14 October 2014; 22 December 2014 This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The first of these four papers, "Radius constants for functions with the prescribed coefficient bounds," establishes a coefficient inequality for sense-preserving harmonic functions to compute the bounds for the radius of univalence and radius of full starlikeness (and convexity) of positive order for functions with prescribed coefficient bound on the analytic part; the second one, "On certain subclass of harmonic starlike functions," discusses the geometric properties for a new class of harmonic univalent functions; the third one, "A family of minimal surfaces and univalent planar harmonic mappings," presents a two-parameter family of minimal surfaces constructed by lifting a family of planar harmonic mappings, while the fourth one, "Landau-type theorems for certain biharmonic mappings," proves the Landau-type theorems for biharmonic mappings connected with a linear complex operator.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2014/578214</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><subject>Functional equations ; Functions ; Mathematical research ; Studies</subject><ispartof>Abstract and Applied Analysis, 2014, Vol.2014, p.100-101-910</ispartof><rights>Copyright © 2014 V. Ravichandran et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>COPYRIGHT 2015 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 V. Ravichandran et al. V. Ravichandran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2014 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1641807449/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1641807449?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,25731,27900,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Ravichandran, V.</creatorcontrib><creatorcontrib>Ahuja, Om P.</creatorcontrib><creatorcontrib>Ali, Rosihan M.</creatorcontrib><title>Analytic and Harmonic Univalent Functions</title><title>Abstract and Applied Analysis</title><description>V. Ravichandran 1 and Om P. Ahuja 2 and Rosihan M. Ali 3 1, Department of Mathematics, University of Delhi, Delhi 110 007, India 2, Department of Mathematical Sciences, Kent State University, Burton, OH 44021, USA 3, School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Received 14 October 2014; Accepted 14 October 2014; 22 December 2014 This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The first of these four papers, "Radius constants for functions with the prescribed coefficient bounds," establishes a coefficient inequality for sense-preserving harmonic functions to compute the bounds for the radius of univalence and radius of full starlikeness (and convexity) of positive order for functions with prescribed coefficient bound on the analytic part; the second one, "On certain subclass of harmonic starlike functions," discusses the geometric properties for a new class of harmonic univalent functions; the third one, "A family of minimal surfaces and univalent planar harmonic mappings," presents a two-parameter family of minimal surfaces constructed by lifting a family of planar harmonic mappings, while the fourth one, "Landau-type theorems for certain biharmonic mappings," proves the Landau-type theorems for biharmonic mappings connected with a linear complex operator.</description><subject>Functional equations</subject><subject>Functions</subject><subject>Mathematical research</subject><subject>Studies</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNUcFuEzEQXSGQKIUTPxCJE6BtZ7z22r4RRZRWikQP5GxNbG9xtLGLd1PUv8ebjYp6Avkwnqf3nmbeVNV7hAtEIS4ZIL8UUjHkL6ozbJWsgYN-Wf6gRN00Uryu3gzDDgAayflZ9XEZqX8cg11QdItryvsUS7OJ4YF6H8fF1SHaMaQ4vK1eddQP_t2pnlebq68_Vtf1-vu3m9VyXRNXwGupGyWAWUuEjvuuEQqlLpBGq9BKdEI4LZ2yBeSKMw1OWk6NlIKEh-a8upl9XaKduc9hT_nRJArmCKR8ZyiXgXtvtltPHXJXVJZraslurei2WjQg0VpRvL7MXvc57bwd_cH2wT0zXW3WJ_RUiMggZwK40myy-PBk8evgh9Hs0iGX0AaDLUcFJUZdWBcz666kZkLs0pjJluf8PtgUfRcKvuQtY1ozhv8tYK3gJcJpjs-zwOY0DNl3T1sgmOn4Zjq-mY9f2J9m9s8QHf0O_yDfzmQKOYzh74K3hdWCKlkAHhXIzBHSoGAyeNYgFO9C1AjNH7Sev-g</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Ravichandran, V.</creator><creator>Ahuja, Om P.</creator><creator>Ali, Rosihan M.</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2014</creationdate><title>Analytic and Harmonic Univalent Functions</title><author>Ravichandran, V. ; Ahuja, Om P. ; Ali, Rosihan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4804-7938502ccaa1d4ef35817985091c81c71d55d97d8c985484290d7c4a3775a5e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Functional equations</topic><topic>Functions</topic><topic>Mathematical research</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravichandran, V.</creatorcontrib><creatorcontrib>Ahuja, Om P.</creatorcontrib><creatorcontrib>Ali, Rosihan M.</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravichandran, V.</au><au>Ahuja, Om P.</au><au>Ali, Rosihan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic and Harmonic Univalent Functions</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2014</date><risdate>2014</risdate><volume>2014</volume><spage>100</spage><epage>101-910</epage><pages>100-101-910</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>V. Ravichandran 1 and Om P. Ahuja 2 and Rosihan M. Ali 3 1, Department of Mathematics, University of Delhi, Delhi 110 007, India 2, Department of Mathematical Sciences, Kent State University, Burton, OH 44021, USA 3, School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Received 14 October 2014; Accepted 14 October 2014; 22 December 2014 This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The first of these four papers, "Radius constants for functions with the prescribed coefficient bounds," establishes a coefficient inequality for sense-preserving harmonic functions to compute the bounds for the radius of univalence and radius of full starlikeness (and convexity) of positive order for functions with prescribed coefficient bound on the analytic part; the second one, "On certain subclass of harmonic starlike functions," discusses the geometric properties for a new class of harmonic univalent functions; the third one, "A family of minimal surfaces and univalent planar harmonic mappings," presents a two-parameter family of minimal surfaces constructed by lifting a family of planar harmonic mappings, while the fourth one, "Landau-type theorems for certain biharmonic mappings," proves the Landau-type theorems for biharmonic mappings connected with a linear complex operator.</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/578214</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 2014, Vol.2014, p.100-101-910 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bbeaf14de03c49a6acbc5fb953071cc5 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database |
subjects | Functional equations Functions Mathematical research Studies |
title | Analytic and Harmonic Univalent Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20and%20Harmonic%20Univalent%20Functions&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Ravichandran,%20V.&rft.date=2014&rft.volume=2014&rft.spage=100&rft.epage=101-910&rft.pages=100-101-910&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2014/578214&rft_dat=%3Cgale_doaj_%3EA426543585%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4804-7938502ccaa1d4ef35817985091c81c71d55d97d8c985484290d7c4a3775a5e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1641807449&rft_id=info:pmid/&rft_galeid=A426543585&rft_airiti_id=P20160825001_201412_201609080014_201609080014_100_101_910&rfr_iscdi=true |