Loading…

Exploring cellulose nanocrystals obtained from olive tree wastes as sustainable crop protection tool against bacterial diseases

Nanomaterials in agriculture represent one of the most innovative method for protecting crops, due to possibility of being applied as nanopesticides or nanocarriers for active ingredients. Furthermore, nanotechnology could be combined with the concept of circular economy through the opportunity of o...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-04, Vol.12 (1), p.6149-14, Article 6149
Main Authors: Schiavi, Daniele, Francesconi, Sara, Taddei, Anna Rita, Fortunati, Elena, Balestra, Giorgio M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanomaterials in agriculture represent one of the most innovative method for protecting crops, due to possibility of being applied as nanopesticides or nanocarriers for active ingredients. Furthermore, nanotechnology could be combined with the concept of circular economy through the opportunity of obtaining highly technological nanometric materials starting from agro-industrial wastes. The present research evaluated the possibility of synthesizing cellulose nanocrystals (CNCs) from olive pruning wastes through chemical bleaching, reusing them as sustainable tool to control the causal agent of the olive knot disease ( Pseudomonas savastanoi pv. savastanoi ). CNCs showed an interesting in vitro effect in inhibiting bacterial growth and bacterial biofilm formation, as well as the ability of reducing bacterial epiphytic survival in a comparable way to copper sulphate on leaf surfaces, when used at 1% w/v. CNCs were at the same time investigated for their interaction with olive tree seedlings, showing no negative effects on leaf development, and a promising root uptake, indicating that CNCs could be used also as nanocarriers for active ingredients. Obtained results highlight the innovative possibility of designing sustainable plant protection strategies capable of revalorise lignocellulosic wastes, meaning a simultaneous low environmental impact thanks to reduction of traditional agrochemicals input.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-10225-9