Loading…
High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins
Biofabrication via light-based 3D printing offers superior resolution and ability to generate free-form architectures, compared to conventional extrusion technologies. While extensive efforts in the design of new hydrogel bioinks lead to major advances in extrusion methods, the accessibility of lith...
Saved in:
Published in: | Materials today bio 2021-09, Vol.12, p.100162-100162, Article 100162 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c525t-6cb223fd0e115ebf5de16fab2e0b71d64b139cb714cd45060aa2e31d72ce2ffd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c525t-6cb223fd0e115ebf5de16fab2e0b71d64b139cb714cd45060aa2e31d72ce2ffd3 |
container_end_page | 100162 |
container_issue | |
container_start_page | 100162 |
container_title | Materials today bio |
container_volume | 12 |
creator | Levato, Riccardo Lim, Khoon S. Li, Wanlu Asua, Ane Urigoitia Peña, Laura Blanco Wang, Mian Falandt, Marc Bernal, Paulina Nuñez Gawlitta, Debby Zhang, Yu Shrike Woodfield, Tim B.F. Malda, Jos |
description | Biofabrication via light-based 3D printing offers superior resolution and ability to generate free-form architectures, compared to conventional extrusion technologies. While extensive efforts in the design of new hydrogel bioinks lead to major advances in extrusion methods, the accessibility of lithographic bioprinting is still hampered by a limited choice of cell-friendly resins. Herein, we report the development of a novel set of photoresponsive bioresins derived from ichthyic-origin gelatin, designed to print high-resolution hydrogel constructs with embedded convoluted networks of vessel-mimetic channels. Unlike mammalian gelatins, these materials display thermal stability as pre-hydrogel solutions at room temperature, ideal for bioprinting on any easily-accessible lithographic printer. Norbornene- and methacryloyl-modification of the gelatin backbone, combined with a ruthenium-based visible light photoinitiator and new coccine as a cytocompatible photoabsorber, allowed to print structures resolving single-pixel features (∼50 μm) with high shape fidelity, even when using low stiffness gels, ideal for cell encapsulation (1–2 kPa). Moreover, aqueous two-phase emulsion bioresins allowed to modulate the permeability of the printed hydrogel bulk. Bioprinted mesenchymal stromal cells displayed high functionality over a month of culture, and underwent multi-lineage differentiation while colonizing the bioresin bulk with tissue-specific neo-deposited extracellular matrix. Importantly, printed hydrogels embedding complex channels with perfusable lumen (diameter |
doi_str_mv | 10.1016/j.mtbio.2021.100162 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bbfd983502a54dfb9278db07dd27f773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590006421000703</els_id><doaj_id>oai_doaj_org_article_bbfd983502a54dfb9278db07dd27f773</doaj_id><sourcerecordid>2607300447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-6cb223fd0e115ebf5de16fab2e0b71d64b139cb714cd45060aa2e31d72ce2ffd3</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEolXpEyChLNnkMHYuPlmAhCp6kSqxgbXlyzjxkRMHO2nplifHOSlVu2Fla-af7x_NTJa9J7AjQJpPh90wS-t3FChJkRSir7JTWrdQADTV62f_k-w8xgMAUNZWAO3b7KSs9gxIRU6zP9e264uA0btltn7MnZ173wUx9VblycEIGawSx5w3ef-gg-_Qxfw-CXPlh8nh73ywKnjVi3FcUyb4IXf-vphxmDCIeQlYrA7SYZ6KE21c2cnWjvFd9sYIF_H88T3Lfl5--3FxXdx-v7q5-HpbqJrWc9EoSWlpNCAhNUpTayRN6o4iSEZ0U0lStip9K6WrGhoQgmJJNKMKqTG6PMtuNq724sCnYAcRHrgXlh8DPnRchNkqh1xKo9t9WQMVdaWNbCnbawlMa8oMY2VifdlY0yIH1ArHOQj3AvoyM9qed_6O7xvaNIwmwMdHQPC_FowzH2xU6JwY0S-R0wZYCVBVLEnLTZpGHGNA82RDgK_HwA_8eAx8PQa-HUOq-vC8w6eaf6tPgs-bIG0M7ywGHpXFUaG2AdWchmL_a_AX8HPMKg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607300447</pqid></control><display><type>article</type><title>High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins</title><source>ScienceDirect®</source><source>PubMed Central(OpenAccess)</source><creator>Levato, Riccardo ; Lim, Khoon S. ; Li, Wanlu ; Asua, Ane Urigoitia ; Peña, Laura Blanco ; Wang, Mian ; Falandt, Marc ; Bernal, Paulina Nuñez ; Gawlitta, Debby ; Zhang, Yu Shrike ; Woodfield, Tim B.F. ; Malda, Jos</creator><creatorcontrib>Levato, Riccardo ; Lim, Khoon S. ; Li, Wanlu ; Asua, Ane Urigoitia ; Peña, Laura Blanco ; Wang, Mian ; Falandt, Marc ; Bernal, Paulina Nuñez ; Gawlitta, Debby ; Zhang, Yu Shrike ; Woodfield, Tim B.F. ; Malda, Jos</creatorcontrib><description>Biofabrication via light-based 3D printing offers superior resolution and ability to generate free-form architectures, compared to conventional extrusion technologies. While extensive efforts in the design of new hydrogel bioinks lead to major advances in extrusion methods, the accessibility of lithographic bioprinting is still hampered by a limited choice of cell-friendly resins. Herein, we report the development of a novel set of photoresponsive bioresins derived from ichthyic-origin gelatin, designed to print high-resolution hydrogel constructs with embedded convoluted networks of vessel-mimetic channels. Unlike mammalian gelatins, these materials display thermal stability as pre-hydrogel solutions at room temperature, ideal for bioprinting on any easily-accessible lithographic printer. Norbornene- and methacryloyl-modification of the gelatin backbone, combined with a ruthenium-based visible light photoinitiator and new coccine as a cytocompatible photoabsorber, allowed to print structures resolving single-pixel features (∼50 μm) with high shape fidelity, even when using low stiffness gels, ideal for cell encapsulation (1–2 kPa). Moreover, aqueous two-phase emulsion bioresins allowed to modulate the permeability of the printed hydrogel bulk. Bioprinted mesenchymal stromal cells displayed high functionality over a month of culture, and underwent multi-lineage differentiation while colonizing the bioresin bulk with tissue-specific neo-deposited extracellular matrix. Importantly, printed hydrogels embedding complex channels with perfusable lumen (diameter <200 μm) were obtained, replicating anatomical 3D networks with out-of-plane branches (i.e. brain vessels) that cannot otherwise be reproduced by extrusion bioprinting. This versatile bioresin platform opens new avenues for the widespread adoption of lithographic biofabrication, and for bioprinting complex channel-laden constructs with envisioned applications in regenerative medicine and hydrogel-based organ-on-a-chip devices.
[Display omitted]</description><identifier>ISSN: 2590-0064</identifier><identifier>EISSN: 2590-0064</identifier><identifier>DOI: 10.1016/j.mtbio.2021.100162</identifier><identifier>PMID: 34870141</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biofabrication and bioprinting ; Bioresin ; Digital light processing ; Full Length ; Hydrogel ; Lithography</subject><ispartof>Materials today bio, 2021-09, Vol.12, p.100162-100162, Article 100162</ispartof><rights>2021 The Authors</rights><rights>2021 The Authors. Published by Elsevier Ltd.</rights><rights>2021 The Authors. Published by Elsevier Ltd. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-6cb223fd0e115ebf5de16fab2e0b71d64b139cb714cd45060aa2e31d72ce2ffd3</citedby><cites>FETCH-LOGICAL-c525t-6cb223fd0e115ebf5de16fab2e0b71d64b139cb714cd45060aa2e31d72ce2ffd3</cites><orcidid>0000-0002-5428-7575 ; 0000-0002-9241-7676 ; 0000-0002-3795-3804 ; 0000-0002-2486-196X ; 0000-0002-0045-0808 ; 0000-0001-9622-3062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626672/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2590006421000703$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34870141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levato, Riccardo</creatorcontrib><creatorcontrib>Lim, Khoon S.</creatorcontrib><creatorcontrib>Li, Wanlu</creatorcontrib><creatorcontrib>Asua, Ane Urigoitia</creatorcontrib><creatorcontrib>Peña, Laura Blanco</creatorcontrib><creatorcontrib>Wang, Mian</creatorcontrib><creatorcontrib>Falandt, Marc</creatorcontrib><creatorcontrib>Bernal, Paulina Nuñez</creatorcontrib><creatorcontrib>Gawlitta, Debby</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Woodfield, Tim B.F.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><title>High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins</title><title>Materials today bio</title><addtitle>Mater Today Bio</addtitle><description>Biofabrication via light-based 3D printing offers superior resolution and ability to generate free-form architectures, compared to conventional extrusion technologies. While extensive efforts in the design of new hydrogel bioinks lead to major advances in extrusion methods, the accessibility of lithographic bioprinting is still hampered by a limited choice of cell-friendly resins. Herein, we report the development of a novel set of photoresponsive bioresins derived from ichthyic-origin gelatin, designed to print high-resolution hydrogel constructs with embedded convoluted networks of vessel-mimetic channels. Unlike mammalian gelatins, these materials display thermal stability as pre-hydrogel solutions at room temperature, ideal for bioprinting on any easily-accessible lithographic printer. Norbornene- and methacryloyl-modification of the gelatin backbone, combined with a ruthenium-based visible light photoinitiator and new coccine as a cytocompatible photoabsorber, allowed to print structures resolving single-pixel features (∼50 μm) with high shape fidelity, even when using low stiffness gels, ideal for cell encapsulation (1–2 kPa). Moreover, aqueous two-phase emulsion bioresins allowed to modulate the permeability of the printed hydrogel bulk. Bioprinted mesenchymal stromal cells displayed high functionality over a month of culture, and underwent multi-lineage differentiation while colonizing the bioresin bulk with tissue-specific neo-deposited extracellular matrix. Importantly, printed hydrogels embedding complex channels with perfusable lumen (diameter <200 μm) were obtained, replicating anatomical 3D networks with out-of-plane branches (i.e. brain vessels) that cannot otherwise be reproduced by extrusion bioprinting. This versatile bioresin platform opens new avenues for the widespread adoption of lithographic biofabrication, and for bioprinting complex channel-laden constructs with envisioned applications in regenerative medicine and hydrogel-based organ-on-a-chip devices.
[Display omitted]</description><subject>Biofabrication and bioprinting</subject><subject>Bioresin</subject><subject>Digital light processing</subject><subject>Full Length</subject><subject>Hydrogel</subject><subject>Lithography</subject><issn>2590-0064</issn><issn>2590-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiMEolXpEyChLNnkMHYuPlmAhCp6kSqxgbXlyzjxkRMHO2nplifHOSlVu2Fla-af7x_NTJa9J7AjQJpPh90wS-t3FChJkRSir7JTWrdQADTV62f_k-w8xgMAUNZWAO3b7KSs9gxIRU6zP9e264uA0btltn7MnZ173wUx9VblycEIGawSx5w3ef-gg-_Qxfw-CXPlh8nh73ywKnjVi3FcUyb4IXf-vphxmDCIeQlYrA7SYZ6KE21c2cnWjvFd9sYIF_H88T3Lfl5--3FxXdx-v7q5-HpbqJrWc9EoSWlpNCAhNUpTayRN6o4iSEZ0U0lStip9K6WrGhoQgmJJNKMKqTG6PMtuNq724sCnYAcRHrgXlh8DPnRchNkqh1xKo9t9WQMVdaWNbCnbawlMa8oMY2VifdlY0yIH1ArHOQj3AvoyM9qed_6O7xvaNIwmwMdHQPC_FowzH2xU6JwY0S-R0wZYCVBVLEnLTZpGHGNA82RDgK_HwA_8eAx8PQa-HUOq-vC8w6eaf6tPgs-bIG0M7ywGHpXFUaG2AdWchmL_a_AX8HPMKg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Levato, Riccardo</creator><creator>Lim, Khoon S.</creator><creator>Li, Wanlu</creator><creator>Asua, Ane Urigoitia</creator><creator>Peña, Laura Blanco</creator><creator>Wang, Mian</creator><creator>Falandt, Marc</creator><creator>Bernal, Paulina Nuñez</creator><creator>Gawlitta, Debby</creator><creator>Zhang, Yu Shrike</creator><creator>Woodfield, Tim B.F.</creator><creator>Malda, Jos</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5428-7575</orcidid><orcidid>https://orcid.org/0000-0002-9241-7676</orcidid><orcidid>https://orcid.org/0000-0002-3795-3804</orcidid><orcidid>https://orcid.org/0000-0002-2486-196X</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0001-9622-3062</orcidid></search><sort><creationdate>20210901</creationdate><title>High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins</title><author>Levato, Riccardo ; Lim, Khoon S. ; Li, Wanlu ; Asua, Ane Urigoitia ; Peña, Laura Blanco ; Wang, Mian ; Falandt, Marc ; Bernal, Paulina Nuñez ; Gawlitta, Debby ; Zhang, Yu Shrike ; Woodfield, Tim B.F. ; Malda, Jos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-6cb223fd0e115ebf5de16fab2e0b71d64b139cb714cd45060aa2e31d72ce2ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biofabrication and bioprinting</topic><topic>Bioresin</topic><topic>Digital light processing</topic><topic>Full Length</topic><topic>Hydrogel</topic><topic>Lithography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levato, Riccardo</creatorcontrib><creatorcontrib>Lim, Khoon S.</creatorcontrib><creatorcontrib>Li, Wanlu</creatorcontrib><creatorcontrib>Asua, Ane Urigoitia</creatorcontrib><creatorcontrib>Peña, Laura Blanco</creatorcontrib><creatorcontrib>Wang, Mian</creatorcontrib><creatorcontrib>Falandt, Marc</creatorcontrib><creatorcontrib>Bernal, Paulina Nuñez</creatorcontrib><creatorcontrib>Gawlitta, Debby</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Woodfield, Tim B.F.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levato, Riccardo</au><au>Lim, Khoon S.</au><au>Li, Wanlu</au><au>Asua, Ane Urigoitia</au><au>Peña, Laura Blanco</au><au>Wang, Mian</au><au>Falandt, Marc</au><au>Bernal, Paulina Nuñez</au><au>Gawlitta, Debby</au><au>Zhang, Yu Shrike</au><au>Woodfield, Tim B.F.</au><au>Malda, Jos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins</atitle><jtitle>Materials today bio</jtitle><addtitle>Mater Today Bio</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>12</volume><spage>100162</spage><epage>100162</epage><pages>100162-100162</pages><artnum>100162</artnum><issn>2590-0064</issn><eissn>2590-0064</eissn><abstract>Biofabrication via light-based 3D printing offers superior resolution and ability to generate free-form architectures, compared to conventional extrusion technologies. While extensive efforts in the design of new hydrogel bioinks lead to major advances in extrusion methods, the accessibility of lithographic bioprinting is still hampered by a limited choice of cell-friendly resins. Herein, we report the development of a novel set of photoresponsive bioresins derived from ichthyic-origin gelatin, designed to print high-resolution hydrogel constructs with embedded convoluted networks of vessel-mimetic channels. Unlike mammalian gelatins, these materials display thermal stability as pre-hydrogel solutions at room temperature, ideal for bioprinting on any easily-accessible lithographic printer. Norbornene- and methacryloyl-modification of the gelatin backbone, combined with a ruthenium-based visible light photoinitiator and new coccine as a cytocompatible photoabsorber, allowed to print structures resolving single-pixel features (∼50 μm) with high shape fidelity, even when using low stiffness gels, ideal for cell encapsulation (1–2 kPa). Moreover, aqueous two-phase emulsion bioresins allowed to modulate the permeability of the printed hydrogel bulk. Bioprinted mesenchymal stromal cells displayed high functionality over a month of culture, and underwent multi-lineage differentiation while colonizing the bioresin bulk with tissue-specific neo-deposited extracellular matrix. Importantly, printed hydrogels embedding complex channels with perfusable lumen (diameter <200 μm) were obtained, replicating anatomical 3D networks with out-of-plane branches (i.e. brain vessels) that cannot otherwise be reproduced by extrusion bioprinting. This versatile bioresin platform opens new avenues for the widespread adoption of lithographic biofabrication, and for bioprinting complex channel-laden constructs with envisioned applications in regenerative medicine and hydrogel-based organ-on-a-chip devices.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34870141</pmid><doi>10.1016/j.mtbio.2021.100162</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5428-7575</orcidid><orcidid>https://orcid.org/0000-0002-9241-7676</orcidid><orcidid>https://orcid.org/0000-0002-3795-3804</orcidid><orcidid>https://orcid.org/0000-0002-2486-196X</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0001-9622-3062</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2590-0064 |
ispartof | Materials today bio, 2021-09, Vol.12, p.100162-100162, Article 100162 |
issn | 2590-0064 2590-0064 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bbfd983502a54dfb9278db07dd27f773 |
source | ScienceDirect®; PubMed Central(OpenAccess) |
subjects | Biofabrication and bioprinting Bioresin Digital light processing Full Length Hydrogel Lithography |
title | High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20lithographic%20biofabrication%20of%20hydrogels%20with%20complex%20microchannels%20from%20low-temperature-soluble%20gelatin%20bioresins&rft.jtitle=Materials%20today%20bio&rft.au=Levato,%20Riccardo&rft.date=2021-09-01&rft.volume=12&rft.spage=100162&rft.epage=100162&rft.pages=100162-100162&rft.artnum=100162&rft.issn=2590-0064&rft.eissn=2590-0064&rft_id=info:doi/10.1016/j.mtbio.2021.100162&rft_dat=%3Cproquest_doaj_%3E2607300447%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-6cb223fd0e115ebf5de16fab2e0b71d64b139cb714cd45060aa2e31d72ce2ffd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607300447&rft_id=info:pmid/34870141&rfr_iscdi=true |