Loading…
A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application
Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwel...
Saved in:
Published in: | Journal of mathematics (Hidawi) 2022, Vol.2022 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of mathematics (Hidawi) |
container_volume | 2022 |
creator | Akram, Muhammad Nauman Amin, Muhammad Sami, Faiza Mastor, Adam Braima Egeh, Omer Mohamed Muse, Abdisalam Hassan |
description | Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwell Poisson (COMP) distribution. Generally, the maximum likelihood estimator is used for the estimation of unknown parameters of the COMP regression model. However, in the existence of multicollinearity, the estimates become unstable due to its high variance and standard error. To solve the issue, a new COMP Liu estimator is proposed for the COMP regression model with over-, equi-, and underdispersion. To assess the performance, we conduct a Monte Carlo simulation where mean squared error is considered as an evaluation criterion. Findings of simulation study show that the performance of our new estimator is considerably better as compared to others. Finally, an application is consider to assess the superiority of the proposed COMP Liu estimator. The simulation and application findings clearly demonstrated that the proposed estimator is superior to the maximum likelihood estimator. |
doi_str_mv | 10.1155/2022/3323955 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bc13d14ea7b94198a4f9a447afc62b98</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bc13d14ea7b94198a4f9a447afc62b98</doaj_id><sourcerecordid>2648811825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhS0EEqiw4wCRWELB45_EXlYVf1ILCMHamiQ2uApxsVMVdtwBTshJSCmwZDUzT5_ePOkRsg_0GEDKE0YZO-GccS3lBtlhHMRQFEpu_u4509tkL6UZpRSY4krTHXIzyq7sMhuHdomv2RRflrZpPt_eb4JPKbTZxC-yW_sQbUq-P09T55-wC_Hz7WNqu8dQZ9jW2Wg-b3yFXY_ski2HTbJ7P3NA7s9O78YXw8n1-eV4NBlWgvJuWFegeI2FyyVnklPgOdCSacskU04zXTkFDp10uaVQ1hxyy1Bya0tZQMH4gFyufeuAMzOPfaz4agJ68y2E-GAwdr5qrCkr4DUIi0WpBWiFwmkUokBX5azUqvc6WHvNY3he2NSZWVjEto9vWC6UAlB9xgE5WlNVDClF6_6-AjWrCsyqAvNTQY8frvFH39a49P_TX598hcI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648811825</pqid></control><display><type>article</type><title>A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Akram, Muhammad Nauman ; Amin, Muhammad ; Sami, Faiza ; Mastor, Adam Braima ; Egeh, Omer Mohamed ; Muse, Abdisalam Hassan</creator><contributor>Psarrakos, Georgios ; Georgios Psarrakos</contributor><creatorcontrib>Akram, Muhammad Nauman ; Amin, Muhammad ; Sami, Faiza ; Mastor, Adam Braima ; Egeh, Omer Mohamed ; Muse, Abdisalam Hassan ; Psarrakos, Georgios ; Georgios Psarrakos</creatorcontrib><description>Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwell Poisson (COMP) distribution. Generally, the maximum likelihood estimator is used for the estimation of unknown parameters of the COMP regression model. However, in the existence of multicollinearity, the estimates become unstable due to its high variance and standard error. To solve the issue, a new COMP Liu estimator is proposed for the COMP regression model with over-, equi-, and underdispersion. To assess the performance, we conduct a Monte Carlo simulation where mean squared error is considered as an evaluation criterion. Findings of simulation study show that the performance of our new estimator is considerably better as compared to others. Finally, an application is consider to assess the superiority of the proposed COMP Liu estimator. The simulation and application findings clearly demonstrated that the proposed estimator is superior to the maximum likelihood estimator.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2022/3323955</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Approximation ; Bias ; Generalized linear models ; Mathematics ; Maximum likelihood estimators ; Monte Carlo simulation ; Parameter estimation ; Poisson density functions ; Random variables ; Regression models ; Simulation ; Standard error</subject><ispartof>Journal of mathematics (Hidawi), 2022, Vol.2022 (1)</ispartof><rights>Copyright © 2022 Muhammad Nauman Akram et al.</rights><rights>Copyright © 2022 Muhammad Nauman Akram et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723</citedby><cites>FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723</cites><orcidid>0000-0002-7431-5756 ; 0000-0003-3169-0967 ; 0000-0003-4905-0044 ; 0000-0001-6906-2822 ; 0000-0001-6688-808X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2648811825/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2648811825?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4021,25751,27921,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Psarrakos, Georgios</contributor><contributor>Georgios Psarrakos</contributor><creatorcontrib>Akram, Muhammad Nauman</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Sami, Faiza</creatorcontrib><creatorcontrib>Mastor, Adam Braima</creatorcontrib><creatorcontrib>Egeh, Omer Mohamed</creatorcontrib><creatorcontrib>Muse, Abdisalam Hassan</creatorcontrib><title>A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application</title><title>Journal of mathematics (Hidawi)</title><description>Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwell Poisson (COMP) distribution. Generally, the maximum likelihood estimator is used for the estimation of unknown parameters of the COMP regression model. However, in the existence of multicollinearity, the estimates become unstable due to its high variance and standard error. To solve the issue, a new COMP Liu estimator is proposed for the COMP regression model with over-, equi-, and underdispersion. To assess the performance, we conduct a Monte Carlo simulation where mean squared error is considered as an evaluation criterion. Findings of simulation study show that the performance of our new estimator is considerably better as compared to others. Finally, an application is consider to assess the superiority of the proposed COMP Liu estimator. The simulation and application findings clearly demonstrated that the proposed estimator is superior to the maximum likelihood estimator.</description><subject>Approximation</subject><subject>Bias</subject><subject>Generalized linear models</subject><subject>Mathematics</subject><subject>Maximum likelihood estimators</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Poisson density functions</subject><subject>Random variables</subject><subject>Regression models</subject><subject>Simulation</subject><subject>Standard error</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1OwzAQhS0EEqiw4wCRWELB45_EXlYVf1ILCMHamiQ2uApxsVMVdtwBTshJSCmwZDUzT5_ePOkRsg_0GEDKE0YZO-GccS3lBtlhHMRQFEpu_u4509tkL6UZpRSY4krTHXIzyq7sMhuHdomv2RRflrZpPt_eb4JPKbTZxC-yW_sQbUq-P09T55-wC_Hz7WNqu8dQZ9jW2Wg-b3yFXY_ski2HTbJ7P3NA7s9O78YXw8n1-eV4NBlWgvJuWFegeI2FyyVnklPgOdCSacskU04zXTkFDp10uaVQ1hxyy1Bya0tZQMH4gFyufeuAMzOPfaz4agJ68y2E-GAwdr5qrCkr4DUIi0WpBWiFwmkUokBX5azUqvc6WHvNY3he2NSZWVjEto9vWC6UAlB9xgE5WlNVDClF6_6-AjWrCsyqAvNTQY8frvFH39a49P_TX598hcI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Akram, Muhammad Nauman</creator><creator>Amin, Muhammad</creator><creator>Sami, Faiza</creator><creator>Mastor, Adam Braima</creator><creator>Egeh, Omer Mohamed</creator><creator>Muse, Abdisalam Hassan</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0003-3169-0967</orcidid><orcidid>https://orcid.org/0000-0003-4905-0044</orcidid><orcidid>https://orcid.org/0000-0001-6906-2822</orcidid><orcidid>https://orcid.org/0000-0001-6688-808X</orcidid></search><sort><creationdate>2022</creationdate><title>A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application</title><author>Akram, Muhammad Nauman ; Amin, Muhammad ; Sami, Faiza ; Mastor, Adam Braima ; Egeh, Omer Mohamed ; Muse, Abdisalam Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Bias</topic><topic>Generalized linear models</topic><topic>Mathematics</topic><topic>Maximum likelihood estimators</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Poisson density functions</topic><topic>Random variables</topic><topic>Regression models</topic><topic>Simulation</topic><topic>Standard error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akram, Muhammad Nauman</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Sami, Faiza</creatorcontrib><creatorcontrib>Mastor, Adam Braima</creatorcontrib><creatorcontrib>Egeh, Omer Mohamed</creatorcontrib><creatorcontrib>Muse, Abdisalam Hassan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akram, Muhammad Nauman</au><au>Amin, Muhammad</au><au>Sami, Faiza</au><au>Mastor, Adam Braima</au><au>Egeh, Omer Mohamed</au><au>Muse, Abdisalam Hassan</au><au>Psarrakos, Georgios</au><au>Georgios Psarrakos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwell Poisson (COMP) distribution. Generally, the maximum likelihood estimator is used for the estimation of unknown parameters of the COMP regression model. However, in the existence of multicollinearity, the estimates become unstable due to its high variance and standard error. To solve the issue, a new COMP Liu estimator is proposed for the COMP regression model with over-, equi-, and underdispersion. To assess the performance, we conduct a Monte Carlo simulation where mean squared error is considered as an evaluation criterion. Findings of simulation study show that the performance of our new estimator is considerably better as compared to others. Finally, an application is consider to assess the superiority of the proposed COMP Liu estimator. The simulation and application findings clearly demonstrated that the proposed estimator is superior to the maximum likelihood estimator.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2022/3323955</doi><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0003-3169-0967</orcidid><orcidid>https://orcid.org/0000-0003-4905-0044</orcidid><orcidid>https://orcid.org/0000-0001-6906-2822</orcidid><orcidid>https://orcid.org/0000-0001-6688-808X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-4629 |
ispartof | Journal of mathematics (Hidawi), 2022, Vol.2022 (1) |
issn | 2314-4629 2314-4785 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bc13d14ea7b94198a4f9a447afc62b98 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Approximation Bias Generalized linear models Mathematics Maximum likelihood estimators Monte Carlo simulation Parameter estimation Poisson density functions Random variables Regression models Simulation Standard error |
title | A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Conway%20Maxwell%E2%80%93Poisson%20Liu%20Regression%20Estimator%E2%80%94Method%20and%20Application&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Akram,%20Muhammad%20Nauman&rft.date=2022&rft.volume=2022&rft.issue=1&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2022/3323955&rft_dat=%3Cproquest_doaj_%3E2648811825%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648811825&rft_id=info:pmid/&rfr_iscdi=true |