Loading…

A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application

Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematics (Hidawi) 2022, Vol.2022 (1)
Main Authors: Akram, Muhammad Nauman, Amin, Muhammad, Sami, Faiza, Mastor, Adam Braima, Egeh, Omer Mohamed, Muse, Abdisalam Hassan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723
cites cdi_FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematics (Hidawi)
container_volume 2022
creator Akram, Muhammad Nauman
Amin, Muhammad
Sami, Faiza
Mastor, Adam Braima
Egeh, Omer Mohamed
Muse, Abdisalam Hassan
description Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwell Poisson (COMP) distribution. Generally, the maximum likelihood estimator is used for the estimation of unknown parameters of the COMP regression model. However, in the existence of multicollinearity, the estimates become unstable due to its high variance and standard error. To solve the issue, a new COMP Liu estimator is proposed for the COMP regression model with over-, equi-, and underdispersion. To assess the performance, we conduct a Monte Carlo simulation where mean squared error is considered as an evaluation criterion. Findings of simulation study show that the performance of our new estimator is considerably better as compared to others. Finally, an application is consider to assess the superiority of the proposed COMP Liu estimator. The simulation and application findings clearly demonstrated that the proposed estimator is superior to the maximum likelihood estimator.
doi_str_mv 10.1155/2022/3323955
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bc13d14ea7b94198a4f9a447afc62b98</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bc13d14ea7b94198a4f9a447afc62b98</doaj_id><sourcerecordid>2648811825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhS0EEqiw4wCRWELB45_EXlYVf1ILCMHamiQ2uApxsVMVdtwBTshJSCmwZDUzT5_ePOkRsg_0GEDKE0YZO-GccS3lBtlhHMRQFEpu_u4509tkL6UZpRSY4krTHXIzyq7sMhuHdomv2RRflrZpPt_eb4JPKbTZxC-yW_sQbUq-P09T55-wC_Hz7WNqu8dQZ9jW2Wg-b3yFXY_ski2HTbJ7P3NA7s9O78YXw8n1-eV4NBlWgvJuWFegeI2FyyVnklPgOdCSacskU04zXTkFDp10uaVQ1hxyy1Bya0tZQMH4gFyufeuAMzOPfaz4agJ68y2E-GAwdr5qrCkr4DUIi0WpBWiFwmkUokBX5azUqvc6WHvNY3he2NSZWVjEto9vWC6UAlB9xgE5WlNVDClF6_6-AjWrCsyqAvNTQY8frvFH39a49P_TX598hcI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648811825</pqid></control><display><type>article</type><title>A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Akram, Muhammad Nauman ; Amin, Muhammad ; Sami, Faiza ; Mastor, Adam Braima ; Egeh, Omer Mohamed ; Muse, Abdisalam Hassan</creator><contributor>Psarrakos, Georgios ; Georgios Psarrakos</contributor><creatorcontrib>Akram, Muhammad Nauman ; Amin, Muhammad ; Sami, Faiza ; Mastor, Adam Braima ; Egeh, Omer Mohamed ; Muse, Abdisalam Hassan ; Psarrakos, Georgios ; Georgios Psarrakos</creatorcontrib><description>Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwell Poisson (COMP) distribution. Generally, the maximum likelihood estimator is used for the estimation of unknown parameters of the COMP regression model. However, in the existence of multicollinearity, the estimates become unstable due to its high variance and standard error. To solve the issue, a new COMP Liu estimator is proposed for the COMP regression model with over-, equi-, and underdispersion. To assess the performance, we conduct a Monte Carlo simulation where mean squared error is considered as an evaluation criterion. Findings of simulation study show that the performance of our new estimator is considerably better as compared to others. Finally, an application is consider to assess the superiority of the proposed COMP Liu estimator. The simulation and application findings clearly demonstrated that the proposed estimator is superior to the maximum likelihood estimator.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2022/3323955</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Approximation ; Bias ; Generalized linear models ; Mathematics ; Maximum likelihood estimators ; Monte Carlo simulation ; Parameter estimation ; Poisson density functions ; Random variables ; Regression models ; Simulation ; Standard error</subject><ispartof>Journal of mathematics (Hidawi), 2022, Vol.2022 (1)</ispartof><rights>Copyright © 2022 Muhammad Nauman Akram et al.</rights><rights>Copyright © 2022 Muhammad Nauman Akram et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723</citedby><cites>FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723</cites><orcidid>0000-0002-7431-5756 ; 0000-0003-3169-0967 ; 0000-0003-4905-0044 ; 0000-0001-6906-2822 ; 0000-0001-6688-808X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2648811825/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2648811825?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4021,25751,27921,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Psarrakos, Georgios</contributor><contributor>Georgios Psarrakos</contributor><creatorcontrib>Akram, Muhammad Nauman</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Sami, Faiza</creatorcontrib><creatorcontrib>Mastor, Adam Braima</creatorcontrib><creatorcontrib>Egeh, Omer Mohamed</creatorcontrib><creatorcontrib>Muse, Abdisalam Hassan</creatorcontrib><title>A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application</title><title>Journal of mathematics (Hidawi)</title><description>Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwell Poisson (COMP) distribution. Generally, the maximum likelihood estimator is used for the estimation of unknown parameters of the COMP regression model. However, in the existence of multicollinearity, the estimates become unstable due to its high variance and standard error. To solve the issue, a new COMP Liu estimator is proposed for the COMP regression model with over-, equi-, and underdispersion. To assess the performance, we conduct a Monte Carlo simulation where mean squared error is considered as an evaluation criterion. Findings of simulation study show that the performance of our new estimator is considerably better as compared to others. Finally, an application is consider to assess the superiority of the proposed COMP Liu estimator. The simulation and application findings clearly demonstrated that the proposed estimator is superior to the maximum likelihood estimator.</description><subject>Approximation</subject><subject>Bias</subject><subject>Generalized linear models</subject><subject>Mathematics</subject><subject>Maximum likelihood estimators</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Poisson density functions</subject><subject>Random variables</subject><subject>Regression models</subject><subject>Simulation</subject><subject>Standard error</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1OwzAQhS0EEqiw4wCRWELB45_EXlYVf1ILCMHamiQ2uApxsVMVdtwBTshJSCmwZDUzT5_ePOkRsg_0GEDKE0YZO-GccS3lBtlhHMRQFEpu_u4509tkL6UZpRSY4krTHXIzyq7sMhuHdomv2RRflrZpPt_eb4JPKbTZxC-yW_sQbUq-P09T55-wC_Hz7WNqu8dQZ9jW2Wg-b3yFXY_ski2HTbJ7P3NA7s9O78YXw8n1-eV4NBlWgvJuWFegeI2FyyVnklPgOdCSacskU04zXTkFDp10uaVQ1hxyy1Bya0tZQMH4gFyufeuAMzOPfaz4agJ68y2E-GAwdr5qrCkr4DUIi0WpBWiFwmkUokBX5azUqvc6WHvNY3he2NSZWVjEto9vWC6UAlB9xgE5WlNVDClF6_6-AjWrCsyqAvNTQY8frvFH39a49P_TX598hcI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Akram, Muhammad Nauman</creator><creator>Amin, Muhammad</creator><creator>Sami, Faiza</creator><creator>Mastor, Adam Braima</creator><creator>Egeh, Omer Mohamed</creator><creator>Muse, Abdisalam Hassan</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0003-3169-0967</orcidid><orcidid>https://orcid.org/0000-0003-4905-0044</orcidid><orcidid>https://orcid.org/0000-0001-6906-2822</orcidid><orcidid>https://orcid.org/0000-0001-6688-808X</orcidid></search><sort><creationdate>2022</creationdate><title>A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application</title><author>Akram, Muhammad Nauman ; Amin, Muhammad ; Sami, Faiza ; Mastor, Adam Braima ; Egeh, Omer Mohamed ; Muse, Abdisalam Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Bias</topic><topic>Generalized linear models</topic><topic>Mathematics</topic><topic>Maximum likelihood estimators</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Poisson density functions</topic><topic>Random variables</topic><topic>Regression models</topic><topic>Simulation</topic><topic>Standard error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akram, Muhammad Nauman</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Sami, Faiza</creatorcontrib><creatorcontrib>Mastor, Adam Braima</creatorcontrib><creatorcontrib>Egeh, Omer Mohamed</creatorcontrib><creatorcontrib>Muse, Abdisalam Hassan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akram, Muhammad Nauman</au><au>Amin, Muhammad</au><au>Sami, Faiza</au><au>Mastor, Adam Braima</au><au>Egeh, Omer Mohamed</au><au>Muse, Abdisalam Hassan</au><au>Psarrakos, Georgios</au><au>Georgios Psarrakos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>Poisson regression is a popular tool for modeling count data and is applied in medical sciences, engineering and others. Real data, however, are often over or underdispersed, and we cannot apply the Poisson regression. To overcome this issue, we consider a regression model based on the Conway–Maxwell Poisson (COMP) distribution. Generally, the maximum likelihood estimator is used for the estimation of unknown parameters of the COMP regression model. However, in the existence of multicollinearity, the estimates become unstable due to its high variance and standard error. To solve the issue, a new COMP Liu estimator is proposed for the COMP regression model with over-, equi-, and underdispersion. To assess the performance, we conduct a Monte Carlo simulation where mean squared error is considered as an evaluation criterion. Findings of simulation study show that the performance of our new estimator is considerably better as compared to others. Finally, an application is consider to assess the superiority of the proposed COMP Liu estimator. The simulation and application findings clearly demonstrated that the proposed estimator is superior to the maximum likelihood estimator.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2022/3323955</doi><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0003-3169-0967</orcidid><orcidid>https://orcid.org/0000-0003-4905-0044</orcidid><orcidid>https://orcid.org/0000-0001-6906-2822</orcidid><orcidid>https://orcid.org/0000-0001-6688-808X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-4629
ispartof Journal of mathematics (Hidawi), 2022, Vol.2022 (1)
issn 2314-4629
2314-4785
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bc13d14ea7b94198a4f9a447afc62b98
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Approximation
Bias
Generalized linear models
Mathematics
Maximum likelihood estimators
Monte Carlo simulation
Parameter estimation
Poisson density functions
Random variables
Regression models
Simulation
Standard error
title A New Conway Maxwell–Poisson Liu Regression Estimator—Method and Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Conway%20Maxwell%E2%80%93Poisson%20Liu%20Regression%20Estimator%E2%80%94Method%20and%20Application&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Akram,%20Muhammad%20Nauman&rft.date=2022&rft.volume=2022&rft.issue=1&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2022/3323955&rft_dat=%3Cproquest_doaj_%3E2648811825%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-dc183da7f653253013610b29e2528f929cf81faf5f6e01bd316e2a53eeb571723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648811825&rft_id=info:pmid/&rfr_iscdi=true