Loading…

Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires

In this work, vertically aligned silicon nanowires (SiNWs) with relatively high crystallinity have been fabricated through a facile, reliable, and cost-effective metal assisted chemical etching method. After introducing an itemized elucidation of the fabrication process, the effect of varying etchin...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-02, Vol.10 (3), p.404
Main Authors: Naffeti, Mariem, Postigo, Pablo Aitor, Chtourou, Radhouane, Zaïbi, Mohamed Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, vertically aligned silicon nanowires (SiNWs) with relatively high crystallinity have been fabricated through a facile, reliable, and cost-effective metal assisted chemical etching method. After introducing an itemized elucidation of the fabrication process, the effect of varying etching time on morphological, structural, optical, and electrical properties of SiNWs was analysed. The NWs length increased with increasing etching time, whereas the wires filling ratio decreased. The broadband photoluminescence (PL) emission was originated from self-generated silicon nanocrystallites (SiNCs) and their size were derived through an analytical model. FTIR spectroscopy confirms that the PL deterioration for extended time is owing to the restriction of excitation volume and therefore reduction of effective light-emitting crystallites. These SiNWs are very effective in reducing the reflectance to 9-15% in comparison with Si wafer. I-V characteristics revealed that the rectifying behaviour and the diode parameters calculated from conventional thermionic emission and Cheung's model depend on the geometry of SiNWs. We deduce that judicious control of etching time or otherwise SiNWs' length is the key to ensure better optical and electrical properties of SiNWs. Our findings demonstrate that shorter SiNWs are much more optically and electrically active which is auspicious for the use in optoelectronic devices and solar cells applications.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10030404