Loading…

Light-field and spin-orbit-driven currents in van der Waals materials

This review aims to provide an overview over recent developments of light-driven currents with a focus on their application to layered van der Waals materials. In topological and spin-orbit dominated van der Waals materials helicity-driven and light-field-driven currents are relevant for nanophotoni...

Full description

Saved in:
Bibliographic Details
Published in:Nanophotonics (Berlin, Germany) Germany), 2020-09, Vol.9 (9), p.2693-2708
Main Authors: Kiemle, Jonas, Zimmermann, Philipp, Holleitner, Alexander W., Kastl, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This review aims to provide an overview over recent developments of light-driven currents with a focus on their application to layered van der Waals materials. In topological and spin-orbit dominated van der Waals materials helicity-driven and light-field-driven currents are relevant for nanophotonic applications from ultrafast detectors to on-chip current generators. The photon helicity allows addressing chiral and non-trivial surface states in topological systems, but also the valley degree of freedom in two-dimensional van der Waals materials. The underlying spin-orbit interactions break the spatiotemporal electrodynamic symmetries, such that directed currents can emerge after an ultrafast laser excitation. Equally, the light-field of few-cycle optical pulses can coherently drive the transport of charge carriers with sub-cycle precision by generating strong and directed electric fields on the atomic scale. Ultrafast light-driven currents may open up novel perspectives at the interface between photonics and ultrafast electronics.
ISSN:2192-8606
2192-8614
DOI:10.1515/nanoph-2020-0226