Loading…

Enhanced near-infrared absorber: two-step fabricated structured black silicon and its device application

Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its high reflectance and band gap limit. In this study, two-step process, deep reactive ion etching (DRIE) method combined with plasma immersion ion implantation (PIII), are...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale research letters 2018-10, Vol.13 (1), p.316-8, Article 316
Main Authors: Zhong, Hao, Ilyas, Nasir, Song, Yuhao, Li, Wei, Jiang, Yadong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its high reflectance and band gap limit. In this study, two-step process, deep reactive ion etching (DRIE) method combined with plasma immersion ion implantation (PIII), are used to fabricate microstructured black silicon on the surface of C-Si. These improved surfaces doped with sulfur elements realize a narrower band gap and an enhancement of light absorptance, especially in the near-infrared range (800 to 2000 nm). Meanwhile, the maximum light absorptance increases significantly up to 83%. A Si-PIN photoelectronic detector with microstructured black silicon at the back surface exhibits remarkable device performance, leading to a responsivity of 0.53 A/W at 1060 nm. This novel microstructured black silicon, combining narrow band gap characteristic, could have a potential application in near-infrared photoelectronic detection.
ISSN:1931-7573
1556-276X
DOI:10.1186/s11671-018-2741-9