Loading…
Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records
One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, dee...
Saved in:
Published in: | Scientific reports 2021-10, Vol.11 (1), p.20685-20685, Article 20685 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-766bf75b5e02481476e21ed8e4fff015e8dd1dbbc5adab45f8d70d2d161906643 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-766bf75b5e02481476e21ed8e4fff015e8dd1dbbc5adab45f8d70d2d161906643 |
container_end_page | 20685 |
container_issue | 1 |
container_start_page | 20685 |
container_title | Scientific reports |
container_volume | 11 |
creator | Li, Yikuan Rao, Shishir Hassaine, Abdelaali Ramakrishnan, Rema Canoy, Dexter Salimi-Khorshidi, Gholamreza Mamouei, Mohammad Lukasiewicz, Thomas Rahimi, Kazem |
description | One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, deep Bayesian neural networks suffer from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher-level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for a more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and identifying misclassifications, with a comparable generalization performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability. |
doi_str_mv | 10.1038/s41598-021-00144-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bc79d9bbee154a139edf7d64fff402f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bc79d9bbee154a139edf7d64fff402f4</doaj_id><sourcerecordid>2584013281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-766bf75b5e02481476e21ed8e4fff015e8dd1dbbc5adab45f8d70d2d161906643</originalsourceid><addsrcrecordid>eNp9kk1vFDEMhkcIRKvSP8ABjcSFy5Qkk2SSCxIUKJUqcQGJW5QPZzer2WRJZirtvye705aWA7nEih-_dmw3zWuMLjDqxftCMZOiQwR3CGFKO_6sOSWIso70hDx_ZJ8056VsUD2MSIrly-akp5wPBKHT5tdngF37Se-hBB3bKz2Xo7HLyUIpUFqfcjtHC3nSIU77FsoUtnoKKbYhtjCCnXKKwbZr0OO0bjPYlF151bzweixwfnefNT-_fvlx-a27-X51ffnxprOMoqkbODd-YIYBIlRgOnAgGJwA6r1HmIFwDjtjLNNOG8q8cANyxGGOJeKc9mfN9aLrkt6oXa615b1KOqjjQ8orpfMU7AjK2EE6aQwAZlTjXoLzg-OHTBQRf9D6sGjtZrMFZyFOWY9PRJ96YlirVbpVghEuelIF3t0J5PR7rp1S21AsjKOOkOaiCBMU4Z4IXNG3_6CbNOdYW3Wg6tgkkahSZKFsTqVk8A_FYKQOe6CWPVB1D9RxDxSvQW8ef-Mh5H7qFegXoFRXXEH-m_s_sn8AEAC_kQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583229290</pqid></control><display><type>article</type><title>Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records</title><source>PubMed Central(OpenAccess)</source><source>ProQuest - Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Yikuan ; Rao, Shishir ; Hassaine, Abdelaali ; Ramakrishnan, Rema ; Canoy, Dexter ; Salimi-Khorshidi, Gholamreza ; Mamouei, Mohammad ; Lukasiewicz, Thomas ; Rahimi, Kazem</creator><creatorcontrib>Li, Yikuan ; Rao, Shishir ; Hassaine, Abdelaali ; Ramakrishnan, Rema ; Canoy, Dexter ; Salimi-Khorshidi, Gholamreza ; Mamouei, Mohammad ; Lukasiewicz, Thomas ; Rahimi, Kazem</creatorcontrib><description>One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, deep Bayesian neural networks suffer from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher-level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for a more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and identifying misclassifications, with a comparable generalization performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-00144-6</identifier><identifier>PMID: 34667200</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/117 ; 692/699/75 ; Bayesian analysis ; Congestive heart failure ; Decision making ; Deep learning ; Diabetes mellitus ; Electronic medical records ; Factor analysis ; Humanities and Social Sciences ; Mathematical models ; multidisciplinary ; Neural networks ; Risk factors ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2021-10, Vol.11 (1), p.20685-20685, Article 20685</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-766bf75b5e02481476e21ed8e4fff015e8dd1dbbc5adab45f8d70d2d161906643</citedby><cites>FETCH-LOGICAL-c540t-766bf75b5e02481476e21ed8e4fff015e8dd1dbbc5adab45f8d70d2d161906643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2583229290/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2583229290?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34667200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yikuan</creatorcontrib><creatorcontrib>Rao, Shishir</creatorcontrib><creatorcontrib>Hassaine, Abdelaali</creatorcontrib><creatorcontrib>Ramakrishnan, Rema</creatorcontrib><creatorcontrib>Canoy, Dexter</creatorcontrib><creatorcontrib>Salimi-Khorshidi, Gholamreza</creatorcontrib><creatorcontrib>Mamouei, Mohammad</creatorcontrib><creatorcontrib>Lukasiewicz, Thomas</creatorcontrib><creatorcontrib>Rahimi, Kazem</creatorcontrib><title>Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, deep Bayesian neural networks suffer from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher-level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for a more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and identifying misclassifications, with a comparable generalization performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.</description><subject>639/705/117</subject><subject>692/699/75</subject><subject>Bayesian analysis</subject><subject>Congestive heart failure</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Diabetes mellitus</subject><subject>Electronic medical records</subject><subject>Factor analysis</subject><subject>Humanities and Social Sciences</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Risk factors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vFDEMhkcIRKvSP8ABjcSFy5Qkk2SSCxIUKJUqcQGJW5QPZzer2WRJZirtvye705aWA7nEih-_dmw3zWuMLjDqxftCMZOiQwR3CGFKO_6sOSWIso70hDx_ZJ8056VsUD2MSIrly-akp5wPBKHT5tdngF37Se-hBB3bKz2Xo7HLyUIpUFqfcjtHC3nSIU77FsoUtnoKKbYhtjCCnXKKwbZr0OO0bjPYlF151bzweixwfnefNT-_fvlx-a27-X51ffnxprOMoqkbODd-YIYBIlRgOnAgGJwA6r1HmIFwDjtjLNNOG8q8cANyxGGOJeKc9mfN9aLrkt6oXa615b1KOqjjQ8orpfMU7AjK2EE6aQwAZlTjXoLzg-OHTBQRf9D6sGjtZrMFZyFOWY9PRJ96YlirVbpVghEuelIF3t0J5PR7rp1S21AsjKOOkOaiCBMU4Z4IXNG3_6CbNOdYW3Wg6tgkkahSZKFsTqVk8A_FYKQOe6CWPVB1D9RxDxSvQW8ef-Mh5H7qFegXoFRXXEH-m_s_sn8AEAC_kQ</recordid><startdate>20211019</startdate><enddate>20211019</enddate><creator>Li, Yikuan</creator><creator>Rao, Shishir</creator><creator>Hassaine, Abdelaali</creator><creator>Ramakrishnan, Rema</creator><creator>Canoy, Dexter</creator><creator>Salimi-Khorshidi, Gholamreza</creator><creator>Mamouei, Mohammad</creator><creator>Lukasiewicz, Thomas</creator><creator>Rahimi, Kazem</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211019</creationdate><title>Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records</title><author>Li, Yikuan ; Rao, Shishir ; Hassaine, Abdelaali ; Ramakrishnan, Rema ; Canoy, Dexter ; Salimi-Khorshidi, Gholamreza ; Mamouei, Mohammad ; Lukasiewicz, Thomas ; Rahimi, Kazem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-766bf75b5e02481476e21ed8e4fff015e8dd1dbbc5adab45f8d70d2d161906643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/705/117</topic><topic>692/699/75</topic><topic>Bayesian analysis</topic><topic>Congestive heart failure</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Diabetes mellitus</topic><topic>Electronic medical records</topic><topic>Factor analysis</topic><topic>Humanities and Social Sciences</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Risk factors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yikuan</creatorcontrib><creatorcontrib>Rao, Shishir</creatorcontrib><creatorcontrib>Hassaine, Abdelaali</creatorcontrib><creatorcontrib>Ramakrishnan, Rema</creatorcontrib><creatorcontrib>Canoy, Dexter</creatorcontrib><creatorcontrib>Salimi-Khorshidi, Gholamreza</creatorcontrib><creatorcontrib>Mamouei, Mohammad</creatorcontrib><creatorcontrib>Lukasiewicz, Thomas</creatorcontrib><creatorcontrib>Rahimi, Kazem</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yikuan</au><au>Rao, Shishir</au><au>Hassaine, Abdelaali</au><au>Ramakrishnan, Rema</au><au>Canoy, Dexter</au><au>Salimi-Khorshidi, Gholamreza</au><au>Mamouei, Mohammad</au><au>Lukasiewicz, Thomas</au><au>Rahimi, Kazem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-10-19</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>20685</spage><epage>20685</epage><pages>20685-20685</pages><artnum>20685</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, deep Bayesian neural networks suffer from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher-level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for a more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and identifying misclassifications, with a comparable generalization performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34667200</pmid><doi>10.1038/s41598-021-00144-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-10, Vol.11 (1), p.20685-20685, Article 20685 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bc79d9bbee154a139edf7d64fff402f4 |
source | PubMed Central(OpenAccess); ProQuest - Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/117 692/699/75 Bayesian analysis Congestive heart failure Decision making Deep learning Diabetes mellitus Electronic medical records Factor analysis Humanities and Social Sciences Mathematical models multidisciplinary Neural networks Risk factors Science Science (multidisciplinary) |
title | Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Bayesian%20Gaussian%20processes%20for%20uncertainty%20estimation%20in%20electronic%20health%20records&rft.jtitle=Scientific%20reports&rft.au=Li,%20Yikuan&rft.date=2021-10-19&rft.volume=11&rft.issue=1&rft.spage=20685&rft.epage=20685&rft.pages=20685-20685&rft.artnum=20685&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-00144-6&rft_dat=%3Cproquest_doaj_%3E2584013281%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-766bf75b5e02481476e21ed8e4fff015e8dd1dbbc5adab45f8d70d2d161906643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583229290&rft_id=info:pmid/34667200&rfr_iscdi=true |