Loading…
Selection in coral mitogenomes, with insights into adaptations in the deep sea
Corals are a dominant benthic fauna that occur across a vast range of depths from just below the ocean’s surface to the abyssopelagic zone. However, little is known about the evolutionary mechanisms that enable them to inhabit such a wide range of environments. The mitochondrial (mt) genome, which i...
Saved in:
Published in: | Scientific reports 2023-04, Vol.13 (1), p.6016-6016, Article 6016 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Corals are a dominant benthic fauna that occur across a vast range of depths from just below the ocean’s surface to the abyssopelagic zone. However, little is known about the evolutionary mechanisms that enable them to inhabit such a wide range of environments. The mitochondrial (mt) genome, which is involved in energetic pathways, may be subject to selection pressures at greater depths to meet the metabolic demands of that environment. Here, we use a phylogenomic framework combined with codon-based models to evaluate whether mt protein-coding genes (PCGs) associated with cellular energy functions are under positive selection across depth in three groups of corals: Octocorallia, Scleractinia, and Antipatharia. The results demonstrated that mt PCGs of deep- and shallow-water species of all three groups were primarily under strong purifying selection (0.0474 |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-31243-1 |