Loading…

Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices

The capability of emulating neural functionalities efficiently in hardware is crucial for building neuromorphic computing systems. While various types of neuro-mimetic devices have been investigated, it remains challenging to provide a compact device that can emulate spiking neurons. In this work, w...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-05, Vol.12 (1), p.8361-8361, Article 8361
Main Authors: Wang, Cheng, Lee, Chankyu, Roy, Kaushik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-86e42b28afc880fd6d06b3bcddbfb9f3fb892f9ae2c0186f939a31fdc9c08f423
cites cdi_FETCH-LOGICAL-c540t-86e42b28afc880fd6d06b3bcddbfb9f3fb892f9ae2c0186f939a31fdc9c08f423
container_end_page 8361
container_issue 1
container_start_page 8361
container_title Scientific reports
container_volume 12
creator Wang, Cheng
Lee, Chankyu
Roy, Kaushik
description The capability of emulating neural functionalities efficiently in hardware is crucial for building neuromorphic computing systems. While various types of neuro-mimetic devices have been investigated, it remains challenging to provide a compact device that can emulate spiking neurons. In this work, we propose a non-volatile spin-based device for efficiently emulating a leaky integrate-and-fire neuron. By incorporating an exchange-coupled composite free layer in spin-orbit torque magnetic tunnel junctions, multi-domain magnetization switching dynamics is exploited to realize gradual accumulation of membrane potential for a leaky integrate-and-fire neuron with compact footprints. The proposed device offers significantly improved scalability compared with previously proposed spin-based neuro-mimetic implementations while exhibiting high energy efficiency and good controllability. Moreover, the proposed neuron device exhibits a varying leak constant and a varying membrane resistance that are both dependent on the magnitude of the membrane potential. Interestingly, we demonstrate that such device-inspired dynamic behaviors can be incorporated to construct more robust spiking neural network models, and find improved resiliency against various types of noise injection scenarios. The proposed spintronic neuro-mimetic devices may potentially open up exciting opportunities for the development of efficient and robust neuro-inspired computational hardware.
doi_str_mv 10.1038/s41598-022-12555-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bcc6acf93e0c49ad9bd612f780c06cd6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bcc6acf93e0c49ad9bd612f780c06cd6</doaj_id><sourcerecordid>2666720617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-86e42b28afc880fd6d06b3bcddbfb9f3fb892f9ae2c0186f939a31fdc9c08f423</originalsourceid><addsrcrecordid>eNp9kk9vFSEUxYmxsU3bL-DCTOLGDRWYGQY2JqZR26SxG124Ivy5PHnOwBNmmvTby-vU2rooGwjn3B9wOQi9puSMkla8Lx3tpcCEMUxZ3_eYvEBHjHQ9Zi1jLx-tD9FpKVtSR89kR-UrdNj2vZCCsCP042sKBZoMJYwB4tyMoH_dNiHOsMl6Bqyjwz5kaCIsOcXSGF3ANSk20zLOAbs06RCbsqslVQ-2cXATLJQTdOD1WOD0fj5G3z9_-nZ-ga-uv1yef7zCtu_IjAWHjhkmtLdCEO-4I9y0xjpnvJG-9UZI5qUGZgkV3MtW6pZ6Z6UlwnesPUaXK9clvVW7HCadb1XSQd1tpLxROs_BjqCMtVzbigBiO6mdNI5T5gdBLOHW8cr6sLJ2i5nA2dqQrMcn0KdKDD_VJt0oSfft3gPe3QNy-r1AmdUUioVx1BHSUhTjfBgkFZ2o1rf_WbdpybG2au_iAyOcDtXFVpfNqZQM_uEylKh9ENQaBFWDoO6CoEgtevP4GQ8lf7-9GtrVUKoUN5D_nf0M9g8nEcDJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666720617</pqid></control><display><type>article</type><title>Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Cheng ; Lee, Chankyu ; Roy, Kaushik</creator><creatorcontrib>Wang, Cheng ; Lee, Chankyu ; Roy, Kaushik</creatorcontrib><description>The capability of emulating neural functionalities efficiently in hardware is crucial for building neuromorphic computing systems. While various types of neuro-mimetic devices have been investigated, it remains challenging to provide a compact device that can emulate spiking neurons. In this work, we propose a non-volatile spin-based device for efficiently emulating a leaky integrate-and-fire neuron. By incorporating an exchange-coupled composite free layer in spin-orbit torque magnetic tunnel junctions, multi-domain magnetization switching dynamics is exploited to realize gradual accumulation of membrane potential for a leaky integrate-and-fire neuron with compact footprints. The proposed device offers significantly improved scalability compared with previously proposed spin-based neuro-mimetic implementations while exhibiting high energy efficiency and good controllability. Moreover, the proposed neuron device exhibits a varying leak constant and a varying membrane resistance that are both dependent on the magnitude of the membrane potential. Interestingly, we demonstrate that such device-inspired dynamic behaviors can be incorporated to construct more robust spiking neural network models, and find improved resiliency against various types of noise injection scenarios. The proposed spintronic neuro-mimetic devices may potentially open up exciting opportunities for the development of efficient and robust neuro-inspired computational hardware.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-12555-0</identifier><identifier>PMID: 35589802</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/3920 ; 639/166/987 ; 639/705/1042 ; 639/925/927 ; Algorithms ; Behavior ; Energy efficiency ; Firing pattern ; Humanities and Social Sciences ; Membrane potential ; Membrane resistance ; multidisciplinary ; Neural networks ; Neurons ; Noise ; Random access memory ; Science ; Science (multidisciplinary) ; Transistors</subject><ispartof>Scientific reports, 2022-05, Vol.12 (1), p.8361-8361, Article 8361</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-86e42b28afc880fd6d06b3bcddbfb9f3fb892f9ae2c0186f939a31fdc9c08f423</citedby><cites>FETCH-LOGICAL-c540t-86e42b28afc880fd6d06b3bcddbfb9f3fb892f9ae2c0186f939a31fdc9c08f423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2666720617/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2666720617?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35589802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Lee, Chankyu</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><title>Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The capability of emulating neural functionalities efficiently in hardware is crucial for building neuromorphic computing systems. While various types of neuro-mimetic devices have been investigated, it remains challenging to provide a compact device that can emulate spiking neurons. In this work, we propose a non-volatile spin-based device for efficiently emulating a leaky integrate-and-fire neuron. By incorporating an exchange-coupled composite free layer in spin-orbit torque magnetic tunnel junctions, multi-domain magnetization switching dynamics is exploited to realize gradual accumulation of membrane potential for a leaky integrate-and-fire neuron with compact footprints. The proposed device offers significantly improved scalability compared with previously proposed spin-based neuro-mimetic implementations while exhibiting high energy efficiency and good controllability. Moreover, the proposed neuron device exhibits a varying leak constant and a varying membrane resistance that are both dependent on the magnitude of the membrane potential. Interestingly, we demonstrate that such device-inspired dynamic behaviors can be incorporated to construct more robust spiking neural network models, and find improved resiliency against various types of noise injection scenarios. The proposed spintronic neuro-mimetic devices may potentially open up exciting opportunities for the development of efficient and robust neuro-inspired computational hardware.</description><subject>631/378/3920</subject><subject>639/166/987</subject><subject>639/705/1042</subject><subject>639/925/927</subject><subject>Algorithms</subject><subject>Behavior</subject><subject>Energy efficiency</subject><subject>Firing pattern</subject><subject>Humanities and Social Sciences</subject><subject>Membrane potential</subject><subject>Membrane resistance</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Noise</subject><subject>Random access memory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transistors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9vFSEUxYmxsU3bL-DCTOLGDRWYGQY2JqZR26SxG124Ivy5PHnOwBNmmvTby-vU2rooGwjn3B9wOQi9puSMkla8Lx3tpcCEMUxZ3_eYvEBHjHQ9Zi1jLx-tD9FpKVtSR89kR-UrdNj2vZCCsCP042sKBZoMJYwB4tyMoH_dNiHOsMl6Bqyjwz5kaCIsOcXSGF3ANSk20zLOAbs06RCbsqslVQ-2cXATLJQTdOD1WOD0fj5G3z9_-nZ-ga-uv1yef7zCtu_IjAWHjhkmtLdCEO-4I9y0xjpnvJG-9UZI5qUGZgkV3MtW6pZ6Z6UlwnesPUaXK9clvVW7HCadb1XSQd1tpLxROs_BjqCMtVzbigBiO6mdNI5T5gdBLOHW8cr6sLJ2i5nA2dqQrMcn0KdKDD_VJt0oSfft3gPe3QNy-r1AmdUUioVx1BHSUhTjfBgkFZ2o1rf_WbdpybG2au_iAyOcDtXFVpfNqZQM_uEylKh9ENQaBFWDoO6CoEgtevP4GQ8lf7-9GtrVUKoUN5D_nf0M9g8nEcDJ</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Wang, Cheng</creator><creator>Lee, Chankyu</creator><creator>Roy, Kaushik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220519</creationdate><title>Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices</title><author>Wang, Cheng ; Lee, Chankyu ; Roy, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-86e42b28afc880fd6d06b3bcddbfb9f3fb892f9ae2c0186f939a31fdc9c08f423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/378/3920</topic><topic>639/166/987</topic><topic>639/705/1042</topic><topic>639/925/927</topic><topic>Algorithms</topic><topic>Behavior</topic><topic>Energy efficiency</topic><topic>Firing pattern</topic><topic>Humanities and Social Sciences</topic><topic>Membrane potential</topic><topic>Membrane resistance</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Noise</topic><topic>Random access memory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Lee, Chankyu</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cheng</au><au>Lee, Chankyu</au><au>Roy, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-05-19</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>8361</spage><epage>8361</epage><pages>8361-8361</pages><artnum>8361</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The capability of emulating neural functionalities efficiently in hardware is crucial for building neuromorphic computing systems. While various types of neuro-mimetic devices have been investigated, it remains challenging to provide a compact device that can emulate spiking neurons. In this work, we propose a non-volatile spin-based device for efficiently emulating a leaky integrate-and-fire neuron. By incorporating an exchange-coupled composite free layer in spin-orbit torque magnetic tunnel junctions, multi-domain magnetization switching dynamics is exploited to realize gradual accumulation of membrane potential for a leaky integrate-and-fire neuron with compact footprints. The proposed device offers significantly improved scalability compared with previously proposed spin-based neuro-mimetic implementations while exhibiting high energy efficiency and good controllability. Moreover, the proposed neuron device exhibits a varying leak constant and a varying membrane resistance that are both dependent on the magnitude of the membrane potential. Interestingly, we demonstrate that such device-inspired dynamic behaviors can be incorporated to construct more robust spiking neural network models, and find improved resiliency against various types of noise injection scenarios. The proposed spintronic neuro-mimetic devices may potentially open up exciting opportunities for the development of efficient and robust neuro-inspired computational hardware.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35589802</pmid><doi>10.1038/s41598-022-12555-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-05, Vol.12 (1), p.8361-8361, Article 8361
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bcc6acf93e0c49ad9bd612f780c06cd6
source Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378/3920
639/166/987
639/705/1042
639/925/927
Algorithms
Behavior
Energy efficiency
Firing pattern
Humanities and Social Sciences
Membrane potential
Membrane resistance
multidisciplinary
Neural networks
Neurons
Noise
Random access memory
Science
Science (multidisciplinary)
Transistors
title Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20resilient%20leaky%20integrate-and-fire%20neurons%20based%20on%20multi-domain%20spintronic%20devices&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Cheng&rft.date=2022-05-19&rft.volume=12&rft.issue=1&rft.spage=8361&rft.epage=8361&rft.pages=8361-8361&rft.artnum=8361&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-12555-0&rft_dat=%3Cproquest_doaj_%3E2666720617%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-86e42b28afc880fd6d06b3bcddbfb9f3fb892f9ae2c0186f939a31fdc9c08f423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666720617&rft_id=info:pmid/35589802&rfr_iscdi=true