Loading…
Cotton Yield Estimation Using the Remotely Sensed Cotton Boll Index from UAV Images
Cotton constitutes 81% of the world’s natural fibers. Accurate and rapid cotton yield estimation is important for cotton trade and agricultural policy development. Therefore, we developed a remote sensing index that can intuitively represent cotton boll characteristics and support cotton yield estim...
Saved in:
Published in: | Drones (Basel) 2022-09, Vol.6 (9), p.254 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cotton constitutes 81% of the world’s natural fibers. Accurate and rapid cotton yield estimation is important for cotton trade and agricultural policy development. Therefore, we developed a remote sensing index that can intuitively represent cotton boll characteristics and support cotton yield estimation by extracting cotton boll pixels. In our study, the Density of open Cotton boll Pixels (DCPs) was extracted by designing different cotton boll indices combined with the threshold segmentation method. The relationship between DCP and field survey datasets, the Density of Total Cotton bolls (DTC), and yield were compared and analyzed. Five common yield estimation models, Linear Regression (LR), Support Vector Regression (SVR), Classification and Regression Trees (CART), Random Forest (RF), and K-Nearest Neighbors (KNN), were implemented and evaluated. The results showed that DCP had a strong correlation with yield, with a Pearson correlation coefficient of 0.84. The RF method exhibited the best yield estimation performance, with average R2 and rRMSE values of 0.77 and 7.5%, respectively (five-fold cross-validation). This study showed that RedGreenBlue (RGB) and Near Infrared Red (NIR) normalized, a normalized form index consisting of the RGB and NIR bands, performed best. |
---|---|
ISSN: | 2504-446X 2504-446X |
DOI: | 10.3390/drones6090254 |