Loading…

Configurable hardware core for IoT object detection

Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2020 do Instituto Politécnico de Lisboa. Código de referência IPL/2020/TRAINEE/ISEL Object detection is an important task for many applications, like transportat...

Full description

Saved in:
Bibliographic Details
Published in:Future internet 2021-11, Vol.13 (11), p.1-20
Main Authors: Miranda, Pedro R., Pestana, Daniel, D. Lopes, João, Duarte, Rui, Véstias, Mário, Cláudio de Campos Neto, Horácio, de Sousa, Jose
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2020 do Instituto Politécnico de Lisboa. Código de referência IPL/2020/TRAINEE/ISEL Object detection is an important task for many applications, like transportation, security, and medical applications. Many of these applications are needed on edge devices to make local decisions. Therefore, it is necessary to provide low-cost, fast solutions for object detection. This work proposes a configurable hardware core on a field-programmable gate array (FPGA) for object detection. The configurability of the core allows its deployment on target devices with diverse hardware resources. The object detection accelerator is based on YOLO, for its good accuracy at moderate computational complexity. The solution was applied to the design of a core to accelerate the Tiny-YOLOv3, based on a CNN developed for constrained environments. However, it can be applied to other YOLO versions. The core was integrated into a full system-on-chip solution and tested with the COCO dataset. It achieved a performance from 7 to 14 FPS in a low-cost ZYNQ7020 FPGA, depending on the quantization, with an accuracy reduction from 2.1 to 1.4 points of mAP50.
ISSN:1999-5903
1999-5903
DOI:10.3390/fi13110280