Loading…
Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain
mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin...
Saved in:
Published in: | International journal of molecular sciences 2024-09, Vol.25 (18), p.10042 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-ae3a3d5309c03d789cc17098ad8133cdc8ff141e69653b2b0b9a1dec0b73d9ab3 |
container_end_page | |
container_issue | 18 |
container_start_page | 10042 |
container_title | International journal of molecular sciences |
container_volume | 25 |
creator | Zhan, Jun Harwood, Frank Have, Sara Ten Lamond, Angus Phillips, Aaron H Kriwacki, Richard W Halder, Priyanka Cardone, Monica Grosveld, Gerard C |
description | mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components. mTORC3 phosphorylates mTORC1 and mTORC2 targets and contains the ETS transcription factor ETV7, which binds to mTOR and is essential for mTORC3 assembly in the cytoplasm. Tumor cells that assemble mTORC3 have a proliferative advantage and become resistant to rapamycin, indicating that inhibiting mTORC3 may have a therapeutic impact on cancer. Here, we investigate which domains or amino acid residues of ETV7 and mTOR are involved in their mutual binding. We found that the mTOR FRB and LBE sequences in the kinase domain interact with the pointed (PNT) and ETS domains of ETV7, respectively. We also found that forced expression of the mTOR FRB domain in the mTORC3-expressing, rapamycin-resistant cell line Karpas-299 out-competes mTOR for ETV7 binding and renders these cells rapamycin-sensitive in vivo. Our data provide useful information for the development of molecules that prevent the assembly of mTORC3, which may have therapeutic value in the treatment of mTORC3-positive cancer. |
doi_str_mv | 10.3390/ijms251810042 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bd0857ad081b45ab8b156bf4a39987f5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810641136</galeid><doaj_id>oai_doaj_org_article_bd0857ad081b45ab8b156bf4a39987f5</doaj_id><sourcerecordid>A810641136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-ae3a3d5309c03d789cc17098ad8133cdc8ff141e69653b2b0b9a1dec0b73d9ab3</originalsourceid><addsrcrecordid>eNptkk1vEzEQQFcIREvhyBWtxIVLimdnvV6fUAgtRFSqBIGr5a9NHe3awd4E9d_XSUppELJkW-PnZ814iuI1kHNETt671ZAqCi0QUldPilOoq2pCSMOePtqfFC9SWhFSYUX58-IEOSKjVXtaiGlKdlD9bRm6clhcf5thOffb0G9tKj86b5xf7o4uFj9ZOYZy8TuU3-1aRjnavPm1sV5n0vlyvLF7QfnVeZls-SkM0vmXxbNO9sm-ul_Pih-XF4vZl8nV9ef5bHo10TXScSItSjQUCdcEDWu51sAIb6VpAVEb3XYd1GAb3lBUlSKKSzBWE8XQcKnwrJgfvCbIlVhHN8h4K4J0Yh8IcSlkHJ3urVCGtJTJPIOqqVStAtqorpbIecs6ml0fDq71Rg3WaOvHKPsj6fGJdzdiGbYCoMYKOMuGd_eGGHKJ0igGl7Tte-lt2CSBAIRnmjUZffsPugqb6HOt9hRFYMD-UkuZM3C-C_lhvZOKaf76pgbAnev8P1Qexg5OB287l-NHFyaHCzqGlKLtHpIEInbtJY7aK_NvHlfmgf7TT3gHZ4fIBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110531717</pqid></control><display><type>article</type><title>Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Zhan, Jun ; Harwood, Frank ; Have, Sara Ten ; Lamond, Angus ; Phillips, Aaron H ; Kriwacki, Richard W ; Halder, Priyanka ; Cardone, Monica ; Grosveld, Gerard C</creator><creatorcontrib>Zhan, Jun ; Harwood, Frank ; Have, Sara Ten ; Lamond, Angus ; Phillips, Aaron H ; Kriwacki, Richard W ; Halder, Priyanka ; Cardone, Monica ; Grosveld, Gerard C</creatorcontrib><description>mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components. mTORC3 phosphorylates mTORC1 and mTORC2 targets and contains the ETS transcription factor ETV7, which binds to mTOR and is essential for mTORC3 assembly in the cytoplasm. Tumor cells that assemble mTORC3 have a proliferative advantage and become resistant to rapamycin, indicating that inhibiting mTORC3 may have a therapeutic impact on cancer. Here, we investigate which domains or amino acid residues of ETV7 and mTOR are involved in their mutual binding. We found that the mTOR FRB and LBE sequences in the kinase domain interact with the pointed (PNT) and ETS domains of ETV7, respectively. We also found that forced expression of the mTOR FRB domain in the mTORC3-expressing, rapamycin-resistant cell line Karpas-299 out-competes mTOR for ETV7 binding and renders these cells rapamycin-sensitive in vivo. Our data provide useful information for the development of molecules that prevent the assembly of mTORC3, which may have therapeutic value in the treatment of mTORC3-positive cancer.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms251810042</identifier><identifier>PMID: 39337528</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; Animals ; Cancer ; Cell Line, Tumor ; Development and progression ; ETV7 ; Experiments ; Genetic aspects ; Health aspects ; HEK293 Cells ; Humans ; Kinases ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; mTOC3 ; mTOR ; Mutation ; Phosphorylation ; Physiological aspects ; Protein Binding ; Protein Domains ; Protein kinases ; Proteins ; Proto-Oncogene Proteins c-ets - genetics ; Proto-Oncogene Proteins c-ets - metabolism ; rapamycin ; Sirolimus - pharmacology ; TOR Serine-Threonine Kinases - metabolism ; Transcription factors</subject><ispartof>International journal of molecular sciences, 2024-09, Vol.25 (18), p.10042</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c435t-ae3a3d5309c03d789cc17098ad8133cdc8ff141e69653b2b0b9a1dec0b73d9ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110531717/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110531717?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39337528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Jun</creatorcontrib><creatorcontrib>Harwood, Frank</creatorcontrib><creatorcontrib>Have, Sara Ten</creatorcontrib><creatorcontrib>Lamond, Angus</creatorcontrib><creatorcontrib>Phillips, Aaron H</creatorcontrib><creatorcontrib>Kriwacki, Richard W</creatorcontrib><creatorcontrib>Halder, Priyanka</creatorcontrib><creatorcontrib>Cardone, Monica</creatorcontrib><creatorcontrib>Grosveld, Gerard C</creatorcontrib><title>Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components. mTORC3 phosphorylates mTORC1 and mTORC2 targets and contains the ETS transcription factor ETV7, which binds to mTOR and is essential for mTORC3 assembly in the cytoplasm. Tumor cells that assemble mTORC3 have a proliferative advantage and become resistant to rapamycin, indicating that inhibiting mTORC3 may have a therapeutic impact on cancer. Here, we investigate which domains or amino acid residues of ETV7 and mTOR are involved in their mutual binding. We found that the mTOR FRB and LBE sequences in the kinase domain interact with the pointed (PNT) and ETS domains of ETV7, respectively. We also found that forced expression of the mTOR FRB domain in the mTORC3-expressing, rapamycin-resistant cell line Karpas-299 out-competes mTOR for ETV7 binding and renders these cells rapamycin-sensitive in vivo. Our data provide useful information for the development of molecules that prevent the assembly of mTORC3, which may have therapeutic value in the treatment of mTORC3-positive cancer.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Development and progression</subject><subject>ETV7</subject><subject>Experiments</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>mTOC3</subject><subject>mTOR</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-ets - genetics</subject><subject>Proto-Oncogene Proteins c-ets - metabolism</subject><subject>rapamycin</subject><subject>Sirolimus - pharmacology</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription factors</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1vEzEQQFcIREvhyBWtxIVLimdnvV6fUAgtRFSqBIGr5a9NHe3awd4E9d_XSUppELJkW-PnZ814iuI1kHNETt671ZAqCi0QUldPilOoq2pCSMOePtqfFC9SWhFSYUX58-IEOSKjVXtaiGlKdlD9bRm6clhcf5thOffb0G9tKj86b5xf7o4uFj9ZOYZy8TuU3-1aRjnavPm1sV5n0vlyvLF7QfnVeZls-SkM0vmXxbNO9sm-ul_Pih-XF4vZl8nV9ef5bHo10TXScSItSjQUCdcEDWu51sAIb6VpAVEb3XYd1GAb3lBUlSKKSzBWE8XQcKnwrJgfvCbIlVhHN8h4K4J0Yh8IcSlkHJ3urVCGtJTJPIOqqVStAtqorpbIecs6ml0fDq71Rg3WaOvHKPsj6fGJdzdiGbYCoMYKOMuGd_eGGHKJ0igGl7Tte-lt2CSBAIRnmjUZffsPugqb6HOt9hRFYMD-UkuZM3C-C_lhvZOKaf76pgbAnev8P1Qexg5OB287l-NHFyaHCzqGlKLtHpIEInbtJY7aK_NvHlfmgf7TT3gHZ4fIBw</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Zhan, Jun</creator><creator>Harwood, Frank</creator><creator>Have, Sara Ten</creator><creator>Lamond, Angus</creator><creator>Phillips, Aaron H</creator><creator>Kriwacki, Richard W</creator><creator>Halder, Priyanka</creator><creator>Cardone, Monica</creator><creator>Grosveld, Gerard C</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240918</creationdate><title>Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain</title><author>Zhan, Jun ; Harwood, Frank ; Have, Sara Ten ; Lamond, Angus ; Phillips, Aaron H ; Kriwacki, Richard W ; Halder, Priyanka ; Cardone, Monica ; Grosveld, Gerard C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-ae3a3d5309c03d789cc17098ad8133cdc8ff141e69653b2b0b9a1dec0b73d9ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Development and progression</topic><topic>ETV7</topic><topic>Experiments</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>mTOC3</topic><topic>mTOR</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-ets - genetics</topic><topic>Proto-Oncogene Proteins c-ets - metabolism</topic><topic>rapamycin</topic><topic>Sirolimus - pharmacology</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Jun</creatorcontrib><creatorcontrib>Harwood, Frank</creatorcontrib><creatorcontrib>Have, Sara Ten</creatorcontrib><creatorcontrib>Lamond, Angus</creatorcontrib><creatorcontrib>Phillips, Aaron H</creatorcontrib><creatorcontrib>Kriwacki, Richard W</creatorcontrib><creatorcontrib>Halder, Priyanka</creatorcontrib><creatorcontrib>Cardone, Monica</creatorcontrib><creatorcontrib>Grosveld, Gerard C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Jun</au><au>Harwood, Frank</au><au>Have, Sara Ten</au><au>Lamond, Angus</au><au>Phillips, Aaron H</au><au>Kriwacki, Richard W</au><au>Halder, Priyanka</au><au>Cardone, Monica</au><au>Grosveld, Gerard C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-09-18</date><risdate>2024</risdate><volume>25</volume><issue>18</issue><spage>10042</spage><pages>10042-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components. mTORC3 phosphorylates mTORC1 and mTORC2 targets and contains the ETS transcription factor ETV7, which binds to mTOR and is essential for mTORC3 assembly in the cytoplasm. Tumor cells that assemble mTORC3 have a proliferative advantage and become resistant to rapamycin, indicating that inhibiting mTORC3 may have a therapeutic impact on cancer. Here, we investigate which domains or amino acid residues of ETV7 and mTOR are involved in their mutual binding. We found that the mTOR FRB and LBE sequences in the kinase domain interact with the pointed (PNT) and ETS domains of ETV7, respectively. We also found that forced expression of the mTOR FRB domain in the mTORC3-expressing, rapamycin-resistant cell line Karpas-299 out-competes mTOR for ETV7 binding and renders these cells rapamycin-sensitive in vivo. Our data provide useful information for the development of molecules that prevent the assembly of mTORC3, which may have therapeutic value in the treatment of mTORC3-positive cancer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39337528</pmid><doi>10.3390/ijms251810042</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2024-09, Vol.25 (18), p.10042 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bd0857ad081b45ab8b156bf4a39987f5 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Amino acids Animals Cancer Cell Line, Tumor Development and progression ETV7 Experiments Genetic aspects Health aspects HEK293 Cells Humans Kinases Mechanistic Target of Rapamycin Complex 1 - metabolism mTOC3 mTOR Mutation Phosphorylation Physiological aspects Protein Binding Protein Domains Protein kinases Proteins Proto-Oncogene Proteins c-ets - genetics Proto-Oncogene Proteins c-ets - metabolism rapamycin Sirolimus - pharmacology TOR Serine-Threonine Kinases - metabolism Transcription factors |
title | Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembly%20of%20mTORC3%20Involves%20Binding%20of%20ETV7%20to%20Two%20Separate%20Sequences%20in%20the%20mTOR%20Kinase%20Domain&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zhan,%20Jun&rft.date=2024-09-18&rft.volume=25&rft.issue=18&rft.spage=10042&rft.pages=10042-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms251810042&rft_dat=%3Cgale_doaj_%3EA810641136%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-ae3a3d5309c03d789cc17098ad8133cdc8ff141e69653b2b0b9a1dec0b73d9ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110531717&rft_id=info:pmid/39337528&rft_galeid=A810641136&rfr_iscdi=true |