Loading…

Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling

Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-mea...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-11, Vol.12 (1), p.18816-18816, Article 18816
Main Authors: El-Melegy, Moumen, Kamel, Rasha, El-Ghar, Mohamed Abou, Shehata, Mohamed, Khalifa, Fahmi, El-Baz, Ayman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53
cites cdi_FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53
container_end_page 18816
container_issue 1
container_start_page 18816
container_title Scientific reports
container_volume 12
creator El-Melegy, Moumen
Kamel, Rasha
El-Ghar, Mohamed Abou
Shehata, Mohamed
Khalifa, Fahmi
El-Baz, Ayman
description Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.
doi_str_mv 10.1038/s41598-022-23408-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91</doaj_id><sourcerecordid>2732140338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53</originalsourceid><addsrcrecordid>eNp9ks1vFCEYhydGY5vaf8CDIfHiwVE-5-NiYtaqG9uYGD0TBl6mszKwwswm279edqfW1oNceGEeHmD4FcVzgt8QzJq3iRPRNiWmtKSM46Ykj4pTirnIQ0of36tPivOUNjg3QVtO2qfFCasYE5TWp8X2y2A87FGCfgQ_qWkIHtkYRvRhdVFefVsjHfwOYj_4HjnYgcvohEaYroNJr5Gdb272SLs5TRAPjPIGXan4M-xQzHUW2QGcQWMw4DLwrHhilUtwftufFT8-XnxffS4vv35ar95fllpwPJXcgmCE1lBVFrecdbiuOoa7FjMhqNINabrWGkyMBtU1QEALqFmuKoxBCXZWrBevCWojt3EYVdzLoAZ5nAixlypOg3YgO1PRRmFsGq55Z6zqFFUVJmAEZ7Yl2fVucW3nboS8o5-icg-kD7_44Vr2YSfbitX4KHh1K4jh1wxpkuOQNDinPIQ5SVozKpioaprRl_-gmzBHn3_VkSIcM9Zkii6UjiGlCPbuMATLQz7kkg-Z8yGP-ZCHU7y4f427JX_SkAG2AGl7eEuIf_f-j_Y3hhnHCw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732140338</pqid></control><display><type>article</type><title>Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>El-Melegy, Moumen ; Kamel, Rasha ; El-Ghar, Mohamed Abou ; Shehata, Mohamed ; Khalifa, Fahmi ; El-Baz, Ayman</creator><creatorcontrib>El-Melegy, Moumen ; Kamel, Rasha ; El-Ghar, Mohamed Abou ; Shehata, Mohamed ; Khalifa, Fahmi ; El-Baz, Ayman</creatorcontrib><description>Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-23408-1</identifier><identifier>PMID: 36335227</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 639/166/987 ; 692/700/1421/1770 ; Accuracy ; Cluster Analysis ; Humanities and Social Sciences ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Kidney - diagnostic imaging ; Kidney transplantation ; Kidneys ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; multidisciplinary ; Neural networks ; Noise levels ; Science ; Science (multidisciplinary) ; Segmentation</subject><ispartof>Scientific reports, 2022-11, Vol.12 (1), p.18816-18816, Article 18816</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53</citedby><cites>FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2732140338/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2732140338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36335227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Melegy, Moumen</creatorcontrib><creatorcontrib>Kamel, Rasha</creatorcontrib><creatorcontrib>El-Ghar, Mohamed Abou</creatorcontrib><creatorcontrib>Shehata, Mohamed</creatorcontrib><creatorcontrib>Khalifa, Fahmi</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><title>Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.</description><subject>639/166/985</subject><subject>639/166/987</subject><subject>692/700/1421/1770</subject><subject>Accuracy</subject><subject>Cluster Analysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Kidney - diagnostic imaging</subject><subject>Kidney transplantation</subject><subject>Kidneys</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Noise levels</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1vFCEYhydGY5vaf8CDIfHiwVE-5-NiYtaqG9uYGD0TBl6mszKwwswm279edqfW1oNceGEeHmD4FcVzgt8QzJq3iRPRNiWmtKSM46Ykj4pTirnIQ0of36tPivOUNjg3QVtO2qfFCasYE5TWp8X2y2A87FGCfgQ_qWkIHtkYRvRhdVFefVsjHfwOYj_4HjnYgcvohEaYroNJr5Gdb272SLs5TRAPjPIGXan4M-xQzHUW2QGcQWMw4DLwrHhilUtwftufFT8-XnxffS4vv35ar95fllpwPJXcgmCE1lBVFrecdbiuOoa7FjMhqNINabrWGkyMBtU1QEALqFmuKoxBCXZWrBevCWojt3EYVdzLoAZ5nAixlypOg3YgO1PRRmFsGq55Z6zqFFUVJmAEZ7Yl2fVucW3nboS8o5-icg-kD7_44Vr2YSfbitX4KHh1K4jh1wxpkuOQNDinPIQ5SVozKpioaprRl_-gmzBHn3_VkSIcM9Zkii6UjiGlCPbuMATLQz7kkg-Z8yGP-ZCHU7y4f427JX_SkAG2AGl7eEuIf_f-j_Y3hhnHCw</recordid><startdate>20221105</startdate><enddate>20221105</enddate><creator>El-Melegy, Moumen</creator><creator>Kamel, Rasha</creator><creator>El-Ghar, Mohamed Abou</creator><creator>Shehata, Mohamed</creator><creator>Khalifa, Fahmi</creator><creator>El-Baz, Ayman</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221105</creationdate><title>Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling</title><author>El-Melegy, Moumen ; Kamel, Rasha ; El-Ghar, Mohamed Abou ; Shehata, Mohamed ; Khalifa, Fahmi ; El-Baz, Ayman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/166/985</topic><topic>639/166/987</topic><topic>692/700/1421/1770</topic><topic>Accuracy</topic><topic>Cluster Analysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Kidney - diagnostic imaging</topic><topic>Kidney transplantation</topic><topic>Kidneys</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Noise levels</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Melegy, Moumen</creatorcontrib><creatorcontrib>Kamel, Rasha</creatorcontrib><creatorcontrib>El-Ghar, Mohamed Abou</creatorcontrib><creatorcontrib>Shehata, Mohamed</creatorcontrib><creatorcontrib>Khalifa, Fahmi</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><collection>Springer Nature Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Melegy, Moumen</au><au>Kamel, Rasha</au><au>El-Ghar, Mohamed Abou</au><au>Shehata, Mohamed</au><au>Khalifa, Fahmi</au><au>El-Baz, Ayman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-11-05</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>18816</spage><epage>18816</epage><pages>18816-18816</pages><artnum>18816</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36335227</pmid><doi>10.1038/s41598-022-23408-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-11, Vol.12 (1), p.18816-18816, Article 18816
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/985
639/166/987
692/700/1421/1770
Accuracy
Cluster Analysis
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted - methods
Kidney - diagnostic imaging
Kidney transplantation
Kidneys
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
multidisciplinary
Neural networks
Noise levels
Science
Science (multidisciplinary)
Segmentation
title Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kidney%20segmentation%20from%20DCE-MRI%20converging%20level%20set%20methods,%20fuzzy%20clustering%20and%20Markov%20random%20field%20modeling&rft.jtitle=Scientific%20reports&rft.au=El-Melegy,%20Moumen&rft.date=2022-11-05&rft.volume=12&rft.issue=1&rft.spage=18816&rft.epage=18816&rft.pages=18816-18816&rft.artnum=18816&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-23408-1&rft_dat=%3Cproquest_doaj_%3E2732140338%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2732140338&rft_id=info:pmid/36335227&rfr_iscdi=true