Loading…
Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling
Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-mea...
Saved in:
Published in: | Scientific reports 2022-11, Vol.12 (1), p.18816-18816, Article 18816 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53 |
container_end_page | 18816 |
container_issue | 1 |
container_start_page | 18816 |
container_title | Scientific reports |
container_volume | 12 |
creator | El-Melegy, Moumen Kamel, Rasha El-Ghar, Mohamed Abou Shehata, Mohamed Khalifa, Fahmi El-Baz, Ayman |
description | Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels. |
doi_str_mv | 10.1038/s41598-022-23408-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91</doaj_id><sourcerecordid>2732140338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53</originalsourceid><addsrcrecordid>eNp9ks1vFCEYhydGY5vaf8CDIfHiwVE-5-NiYtaqG9uYGD0TBl6mszKwwswm279edqfW1oNceGEeHmD4FcVzgt8QzJq3iRPRNiWmtKSM46Ykj4pTirnIQ0of36tPivOUNjg3QVtO2qfFCasYE5TWp8X2y2A87FGCfgQ_qWkIHtkYRvRhdVFefVsjHfwOYj_4HjnYgcvohEaYroNJr5Gdb272SLs5TRAPjPIGXan4M-xQzHUW2QGcQWMw4DLwrHhilUtwftufFT8-XnxffS4vv35ar95fllpwPJXcgmCE1lBVFrecdbiuOoa7FjMhqNINabrWGkyMBtU1QEALqFmuKoxBCXZWrBevCWojt3EYVdzLoAZ5nAixlypOg3YgO1PRRmFsGq55Z6zqFFUVJmAEZ7Yl2fVucW3nboS8o5-icg-kD7_44Vr2YSfbitX4KHh1K4jh1wxpkuOQNDinPIQ5SVozKpioaprRl_-gmzBHn3_VkSIcM9Zkii6UjiGlCPbuMATLQz7kkg-Z8yGP-ZCHU7y4f427JX_SkAG2AGl7eEuIf_f-j_Y3hhnHCw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732140338</pqid></control><display><type>article</type><title>Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>El-Melegy, Moumen ; Kamel, Rasha ; El-Ghar, Mohamed Abou ; Shehata, Mohamed ; Khalifa, Fahmi ; El-Baz, Ayman</creator><creatorcontrib>El-Melegy, Moumen ; Kamel, Rasha ; El-Ghar, Mohamed Abou ; Shehata, Mohamed ; Khalifa, Fahmi ; El-Baz, Ayman</creatorcontrib><description>Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-23408-1</identifier><identifier>PMID: 36335227</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 639/166/987 ; 692/700/1421/1770 ; Accuracy ; Cluster Analysis ; Humanities and Social Sciences ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Kidney - diagnostic imaging ; Kidney transplantation ; Kidneys ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; multidisciplinary ; Neural networks ; Noise levels ; Science ; Science (multidisciplinary) ; Segmentation</subject><ispartof>Scientific reports, 2022-11, Vol.12 (1), p.18816-18816, Article 18816</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53</citedby><cites>FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2732140338/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2732140338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36335227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Melegy, Moumen</creatorcontrib><creatorcontrib>Kamel, Rasha</creatorcontrib><creatorcontrib>El-Ghar, Mohamed Abou</creatorcontrib><creatorcontrib>Shehata, Mohamed</creatorcontrib><creatorcontrib>Khalifa, Fahmi</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><title>Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.</description><subject>639/166/985</subject><subject>639/166/987</subject><subject>692/700/1421/1770</subject><subject>Accuracy</subject><subject>Cluster Analysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Kidney - diagnostic imaging</subject><subject>Kidney transplantation</subject><subject>Kidneys</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Noise levels</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1vFCEYhydGY5vaf8CDIfHiwVE-5-NiYtaqG9uYGD0TBl6mszKwwswm279edqfW1oNceGEeHmD4FcVzgt8QzJq3iRPRNiWmtKSM46Ykj4pTirnIQ0of36tPivOUNjg3QVtO2qfFCasYE5TWp8X2y2A87FGCfgQ_qWkIHtkYRvRhdVFefVsjHfwOYj_4HjnYgcvohEaYroNJr5Gdb272SLs5TRAPjPIGXan4M-xQzHUW2QGcQWMw4DLwrHhilUtwftufFT8-XnxffS4vv35ar95fllpwPJXcgmCE1lBVFrecdbiuOoa7FjMhqNINabrWGkyMBtU1QEALqFmuKoxBCXZWrBevCWojt3EYVdzLoAZ5nAixlypOg3YgO1PRRmFsGq55Z6zqFFUVJmAEZ7Yl2fVucW3nboS8o5-icg-kD7_44Vr2YSfbitX4KHh1K4jh1wxpkuOQNDinPIQ5SVozKpioaprRl_-gmzBHn3_VkSIcM9Zkii6UjiGlCPbuMATLQz7kkg-Z8yGP-ZCHU7y4f427JX_SkAG2AGl7eEuIf_f-j_Y3hhnHCw</recordid><startdate>20221105</startdate><enddate>20221105</enddate><creator>El-Melegy, Moumen</creator><creator>Kamel, Rasha</creator><creator>El-Ghar, Mohamed Abou</creator><creator>Shehata, Mohamed</creator><creator>Khalifa, Fahmi</creator><creator>El-Baz, Ayman</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221105</creationdate><title>Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling</title><author>El-Melegy, Moumen ; Kamel, Rasha ; El-Ghar, Mohamed Abou ; Shehata, Mohamed ; Khalifa, Fahmi ; El-Baz, Ayman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/166/985</topic><topic>639/166/987</topic><topic>692/700/1421/1770</topic><topic>Accuracy</topic><topic>Cluster Analysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Kidney - diagnostic imaging</topic><topic>Kidney transplantation</topic><topic>Kidneys</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Noise levels</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Melegy, Moumen</creatorcontrib><creatorcontrib>Kamel, Rasha</creatorcontrib><creatorcontrib>El-Ghar, Mohamed Abou</creatorcontrib><creatorcontrib>Shehata, Mohamed</creatorcontrib><creatorcontrib>Khalifa, Fahmi</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><collection>Springer Nature Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Melegy, Moumen</au><au>Kamel, Rasha</au><au>El-Ghar, Mohamed Abou</au><au>Shehata, Mohamed</au><au>Khalifa, Fahmi</au><au>El-Baz, Ayman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-11-05</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>18816</spage><epage>18816</epage><pages>18816-18816</pages><artnum>18816</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36335227</pmid><doi>10.1038/s41598-022-23408-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-11, Vol.12 (1), p.18816-18816, Article 18816 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bd628a00d84c4bdfaba2a601ed543f91 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166/985 639/166/987 692/700/1421/1770 Accuracy Cluster Analysis Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Kidney - diagnostic imaging Kidney transplantation Kidneys Magnetic resonance imaging Magnetic Resonance Imaging - methods multidisciplinary Neural networks Noise levels Science Science (multidisciplinary) Segmentation |
title | Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kidney%20segmentation%20from%20DCE-MRI%20converging%20level%20set%20methods,%20fuzzy%20clustering%20and%20Markov%20random%20field%20modeling&rft.jtitle=Scientific%20reports&rft.au=El-Melegy,%20Moumen&rft.date=2022-11-05&rft.volume=12&rft.issue=1&rft.spage=18816&rft.epage=18816&rft.pages=18816-18816&rft.artnum=18816&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-23408-1&rft_dat=%3Cproquest_doaj_%3E2732140338%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-4fe53127e66f0943b076b30b903552ac818b9fd01dceab8e1ec5e73b8e600ea53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2732140338&rft_id=info:pmid/36335227&rfr_iscdi=true |