Loading…
Impact of Lightning NOx Emissions on Atmospheric Composition and Meteorology in Africa and Europe
NOx emissions from lightning have been added to the CHIMERE v2020r1 model using a parameterization based on convective clouds. In order to estimate the impact of these emissions on pollutant concentrations, two simulations, using the online coupled WRF-CHIMERE models with and without NOx emissions f...
Saved in:
Published in: | Atmosphere 2020-10, Vol.11 (10), p.1128 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NOx emissions from lightning have been added to the CHIMERE v2020r1 model using a parameterization based on convective clouds. In order to estimate the impact of these emissions on pollutant concentrations, two simulations, using the online coupled WRF-CHIMERE models with and without NOx emissions from lightning, have been carried out over the months of July and August 2013 and over a large area covering Europe and the northern part of Africa. The results show that these emissions modify the pollutant concentrations as well as the meteorology. The changes are most significant where the strongest emissions are located. Adding these emissions improves Aerosol Optical Depth in Africa but has a limited impact on the surface concentrations of pollutants in Europe. For the two-month average we find that the maximum changes are localized and may reach ±0.5 K for 2 m temperature, ±0.5 m s−1 for 10 m wind speed, 10 W m−2 for short wave radiation surface flux, and 50 and 2 μg m−3 for dust and sea salt surface concentrations, respectively. This leads to maximum changes of 1 μg m−3 for surface concentrations of PM2.5. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos11101128 |