Loading…
GPU Hızlandırmalı Veri Demetleme Algoritmalarının İncelenmesi
Veri demetleme algoritmaları, arama; spam, saldırı tespiti; hücre, gen, doküman analizi; moleküler dinamik simülasyonlarının biçimlerinin analizi gibi uygulamalar için oldukça önemlidirler. Veri demetleme algoritmaları için birçok araç geliştirilmiştir; ancak günümüzde teknolojinin hızla gelişmesiyl...
Saved in:
Published in: | Academic Journal of Information Technology 2013-05, Vol.4 (11), p.19-59 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Veri demetleme algoritmaları, arama; spam, saldırı tespiti; hücre, gen, doküman analizi; moleküler dinamik simülasyonlarının biçimlerinin analizi gibi uygulamalar için oldukça önemlidirler. Veri demetleme algoritmaları için birçok araç geliştirilmiştir; ancak günümüzde teknolojinin hızla gelişmesiyle toplanan veri miktarı git gide artmaktadır. Veri miktarının artması, analizin neticesini olumlu etkilese de mevcut veri demetleme araçları, büyük-ölçekli veri kümeleriyle çalışan uygulamaların gereksinimlerini hız bakımından karşılayamaz hale gelmişlerdir. Veri demetlemede hızın rolü, veri madenciliği araştırma topluluğunun bir süredir ilgi alanındadır. Araştırmacılar, çeşitli optimizasyon tekniklerinden, veri yapısı tasarımlarından, CPU'da paralelleştirme tekniklerinden ve PC küme sistemi kullanımı gibi yöntemlerden yararlanmaktadırlar. Fakat son zamanlarda düşük maliyet ile yüksek performans sunan yeni bir yaklaşım tüm ilgiyi üzerine çekmiştir: Genel Amaçlı GPU Programlama GPGPU . GPU’ların yüksek paralel hesaplama gücü ve grafik kartlarındaki gelişimin CPU’ya oranla daha hızlı hızlanması, aslında grafik canlandırma ve oyunlar için yoğun matematiksel hesaplamalar yapmak üzere tasarlanan grafik kartlarından genel amaçlı programlar için de yararlanmayı söz konusu hale getirmiştir. Bu makalede, GPGPU yaklaşımıyla veri demetleme algoritmalarının performansını artıran çalışmalar incelenmiş, özetlenmiş, avantajlarından ve eksik yanlarından bahsedilmiştir. Sonuç olarak, bu yaklaşımının üstünlüğü göz önünde bulundurularak konuyla ilgili bilime katkı sağlanabilecek açık alanlar verilmiş ve incelenen çalışmalardan elde edilen GPGPU yaklaşımıyla uygulama geliştirirken dikkat edilmesi gereken hususlar ortaya konulmuştur |
---|---|
ISSN: | 1309-1581 1309-1581 |
DOI: | 10.5824/1309-1581.2013.2.002.x |