Loading…

Short-Term Building Electrical Energy Consumption Forecasting by Employing Gene Expression Programming and GMDH Networks

Over the past decade, energy forecasting applications not only on the grid side of electric power systems but also on the customer side for load and demand prediction purposes have become ubiquitous after the advancements in the smart grid technologies. Within this context, short-term electrical ene...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-03, Vol.13 (5), p.1102
Main Authors: Zor, Kasım, Çelik, Özgür, Timur, Oğuzhan, Teke, Ahmet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over the past decade, energy forecasting applications not only on the grid side of electric power systems but also on the customer side for load and demand prediction purposes have become ubiquitous after the advancements in the smart grid technologies. Within this context, short-term electrical energy consumption forecasting is a requisite for energy management and planning of all buildings from households and residences in the small-scale to huge building complexes in the large-scale. Today’s popular machine learning algorithms in the literature are commonly used to forecast short-term building electrical energy consumption by generating an abstruse analytical expression between explanatory variables and response variables. In this study, gene expression programming (GEP) and group method of data handling (GMDH) networks are meticulously employed for creating genuine and easily understandable mathematical models among predictor variables and target variables and forecasting short-term electrical energy consumption, belonging to a large hospital complex situated in the Eastern Mediterranean. Consequently, acquired results yielded mean absolute percentage errors of 0.620% for GMDH networks and 0.641% for GEP models, which reveal that the forecasting process can be accomplished and formulated simultaneously via proposed algorithms without the need of applying feature selection methods.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13051102