Loading…
Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies
Cancer immunotherapy by immune checkpoint blockade has proven its great potential by saving the lives of a proportion of late stage patients with immunogenic tumor types. However, even in these sensitive tumor types, the majority of patients do not sufficiently respond to the therapy. Furthermore, o...
Saved in:
Published in: | eLife 2020-02, Vol.9 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c684t-aad6ae9f635433569d5f1833ea20750ca89e4199697375545454fa8ba2ccd8243 |
---|---|
cites | cdi_FETCH-LOGICAL-c684t-aad6ae9f635433569d5f1833ea20750ca89e4199697375545454fa8ba2ccd8243 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 9 |
creator | Pombo Antunes, Ana Rita Scheyltjens, Isabelle Duerinck, Johnny Neyns, Bart Movahedi, Kiavash Van Ginderachter, Jo A |
description | Cancer immunotherapy by immune checkpoint blockade has proven its great potential by saving the lives of a proportion of late stage patients with immunogenic tumor types. However, even in these sensitive tumor types, the majority of patients do not sufficiently respond to the therapy. Furthermore, other tumor types, including glioblastoma, remain largely refractory. The glioblastoma immune microenvironment is recognized as highly immunosuppressive, posing a major hurdle for inducing immune-mediated destruction of cancer cells. Scattered information is available about the presence and activity of immunosuppressive or immunostimulatory cell types in glioblastoma tumors, including tumor-associated macrophages, tumor-infiltrating dendritic cells and regulatory T cells. These cell types are heterogeneous at the level of ontogeny, spatial distribution and functionality within the tumor immune compartment, providing insight in the complex cellular and molecular interplay that determines the immune refractory state in glioblastoma. This knowledge may also yield next generation molecular targets for therapeutic intervention. |
doi_str_mv | 10.7554/elife.52176 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bdbc95f3f2d646099ade0c71834ee533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A613171821</galeid><doaj_id>oai_doaj_org_article_bdbc95f3f2d646099ade0c71834ee533</doaj_id><sourcerecordid>A613171821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c684t-aad6ae9f635433569d5f1833ea20750ca89e4199697375545454fa8ba2ccd8243</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbKm98l4GvFFk13xMZjI3Qil-LCwIasG7cCY5mWaZSdZkptV_b3a31q6YXCTkPOc9yZtTFM8pWTZCVG9xcBaXgtGmflScMiLIgsjq--MH-5PiPKUNyaOppKTt0-KEM0IrSprT4vbKG4xpAm-c78vpGst-cKEbIE1hhNKN4-yxHJ2OAf2Ni8GP6KcSUtlBcqm0Ie6zDN7gELb7YLClx9tDbsjBCFucJ6fLNEWYsHeYnhVPLAwJz-_Ws-Lqw_tvl58W688fV5cX64WuZTUtAEwN2Nqai4pzUbdGWCo5R2CkEUSDbLGibVu3Dd_5sZsWZAdMayNZxc-K1UHXBNiobXQjxF8qgFP7gxB7BTFfbUDVmU63wnLLTF3VpG3BINFNLlchCs6z1ruD1nbuRjQ6PzXCcCR6HPHuWvXhRjXZe0ZFFnh1JxDDjxnTpEaXNA4DeAxzUowL0hLJxa7Wy3_QTZijz1ZlqpaCSsLkX6qH_ADnbch19U5UXdSU03x5RjO1_A-Vp8H8r8Gjdfn8KOH1UUJmJvw59TCnpFZfvxyzbw5sbpCUItp7PyhRuy9RuM4tqvYtmukXDy28Z_80JP8NehDiLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368518028</pqid></control><display><type>article</type><title>Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pombo Antunes, Ana Rita ; Scheyltjens, Isabelle ; Duerinck, Johnny ; Neyns, Bart ; Movahedi, Kiavash ; Van Ginderachter, Jo A</creator><creatorcontrib>Pombo Antunes, Ana Rita ; Scheyltjens, Isabelle ; Duerinck, Johnny ; Neyns, Bart ; Movahedi, Kiavash ; Van Ginderachter, Jo A</creatorcontrib><description>Cancer immunotherapy by immune checkpoint blockade has proven its great potential by saving the lives of a proportion of late stage patients with immunogenic tumor types. However, even in these sensitive tumor types, the majority of patients do not sufficiently respond to the therapy. Furthermore, other tumor types, including glioblastoma, remain largely refractory. The glioblastoma immune microenvironment is recognized as highly immunosuppressive, posing a major hurdle for inducing immune-mediated destruction of cancer cells. Scattered information is available about the presence and activity of immunosuppressive or immunostimulatory cell types in glioblastoma tumors, including tumor-associated macrophages, tumor-infiltrating dendritic cells and regulatory T cells. These cell types are heterogeneous at the level of ontogeny, spatial distribution and functionality within the tumor immune compartment, providing insight in the complex cellular and molecular interplay that determines the immune refractory state in glioblastoma. This knowledge may also yield next generation molecular targets for therapeutic intervention.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.52176</identifier><identifier>PMID: 32014107</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Brain - cytology ; Brain - immunology ; Brain - metabolism ; Brain cancer ; Brain Neoplasms - immunology ; Brain Neoplasms - therapy ; Cancer ; Cancer Biology ; Cancer cells ; Cancer immunotherapy ; Cancer therapies ; Cancer treatment ; Dendritic cells ; Dendritic Cells - cytology ; Dendritic Cells - immunology ; Destruction ; Glioblastoma ; Glioblastoma - immunology ; Glioblastoma - therapy ; Glioblastomas ; Gliomas ; Health aspects ; Humans ; Immune checkpoint ; Immune response ; Immunogenicity ; Immunoglobulins ; Immunoregulation ; Immunostimulation ; Immunosuppressive agents ; Immunotherapy ; Lymphocytes ; Lymphocytes T ; Macrophages ; Macrophages - cytology ; Macrophages - immunology ; Melanoma ; microenvironment ; Nivolumab ; Ontogeny ; Pembrolizumab ; Radiation therapy ; regulatory T cell ; Review ; Spatial distribution ; Stem cells ; T cells ; T-Lymphocytes, Regulatory - cytology ; T-Lymphocytes, Regulatory - immunology ; Tumor Microenvironment - immunology ; tumor-associated dendritic cell ; tumor-associated macrophage ; Tumors</subject><ispartof>eLife, 2020-02, Vol.9</ispartof><rights>2020, Pombo Antunes et al.</rights><rights>COPYRIGHT 2020 eLife Science Publications, Ltd.</rights><rights>2020, Pombo Antunes et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020, Pombo Antunes et al 2020 Pombo Antunes et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c684t-aad6ae9f635433569d5f1833ea20750ca89e4199697375545454fa8ba2ccd8243</citedby><cites>FETCH-LOGICAL-c684t-aad6ae9f635433569d5f1833ea20750ca89e4199697375545454fa8ba2ccd8243</cites><orcidid>0000-0002-4442-7474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2368518028/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2368518028?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32014107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pombo Antunes, Ana Rita</creatorcontrib><creatorcontrib>Scheyltjens, Isabelle</creatorcontrib><creatorcontrib>Duerinck, Johnny</creatorcontrib><creatorcontrib>Neyns, Bart</creatorcontrib><creatorcontrib>Movahedi, Kiavash</creatorcontrib><creatorcontrib>Van Ginderachter, Jo A</creatorcontrib><title>Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies</title><title>eLife</title><addtitle>Elife</addtitle><description>Cancer immunotherapy by immune checkpoint blockade has proven its great potential by saving the lives of a proportion of late stage patients with immunogenic tumor types. However, even in these sensitive tumor types, the majority of patients do not sufficiently respond to the therapy. Furthermore, other tumor types, including glioblastoma, remain largely refractory. The glioblastoma immune microenvironment is recognized as highly immunosuppressive, posing a major hurdle for inducing immune-mediated destruction of cancer cells. Scattered information is available about the presence and activity of immunosuppressive or immunostimulatory cell types in glioblastoma tumors, including tumor-associated macrophages, tumor-infiltrating dendritic cells and regulatory T cells. These cell types are heterogeneous at the level of ontogeny, spatial distribution and functionality within the tumor immune compartment, providing insight in the complex cellular and molecular interplay that determines the immune refractory state in glioblastoma. This knowledge may also yield next generation molecular targets for therapeutic intervention.</description><subject>Brain - cytology</subject><subject>Brain - immunology</subject><subject>Brain - metabolism</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - immunology</subject><subject>Brain Neoplasms - therapy</subject><subject>Cancer</subject><subject>Cancer Biology</subject><subject>Cancer cells</subject><subject>Cancer immunotherapy</subject><subject>Cancer therapies</subject><subject>Cancer treatment</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - cytology</subject><subject>Dendritic Cells - immunology</subject><subject>Destruction</subject><subject>Glioblastoma</subject><subject>Glioblastoma - immunology</subject><subject>Glioblastoma - therapy</subject><subject>Glioblastomas</subject><subject>Gliomas</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Immune response</subject><subject>Immunogenicity</subject><subject>Immunoglobulins</subject><subject>Immunoregulation</subject><subject>Immunostimulation</subject><subject>Immunosuppressive agents</subject><subject>Immunotherapy</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - immunology</subject><subject>Melanoma</subject><subject>microenvironment</subject><subject>Nivolumab</subject><subject>Ontogeny</subject><subject>Pembrolizumab</subject><subject>Radiation therapy</subject><subject>regulatory T cell</subject><subject>Review</subject><subject>Spatial distribution</subject><subject>Stem cells</subject><subject>T cells</subject><subject>T-Lymphocytes, Regulatory - cytology</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>Tumor Microenvironment - immunology</subject><subject>tumor-associated dendritic cell</subject><subject>tumor-associated macrophage</subject><subject>Tumors</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbKm98l4GvFFk13xMZjI3Qil-LCwIasG7cCY5mWaZSdZkptV_b3a31q6YXCTkPOc9yZtTFM8pWTZCVG9xcBaXgtGmflScMiLIgsjq--MH-5PiPKUNyaOppKTt0-KEM0IrSprT4vbKG4xpAm-c78vpGst-cKEbIE1hhNKN4-yxHJ2OAf2Ni8GP6KcSUtlBcqm0Ie6zDN7gELb7YLClx9tDbsjBCFucJ6fLNEWYsHeYnhVPLAwJz-_Ws-Lqw_tvl58W688fV5cX64WuZTUtAEwN2Nqai4pzUbdGWCo5R2CkEUSDbLGibVu3Dd_5sZsWZAdMayNZxc-K1UHXBNiobXQjxF8qgFP7gxB7BTFfbUDVmU63wnLLTF3VpG3BINFNLlchCs6z1ruD1nbuRjQ6PzXCcCR6HPHuWvXhRjXZe0ZFFnh1JxDDjxnTpEaXNA4DeAxzUowL0hLJxa7Wy3_QTZijz1ZlqpaCSsLkX6qH_ADnbch19U5UXdSU03x5RjO1_A-Vp8H8r8Gjdfn8KOH1UUJmJvw59TCnpFZfvxyzbw5sbpCUItp7PyhRuy9RuM4tqvYtmukXDy28Z_80JP8NehDiLg</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Pombo Antunes, Ana Rita</creator><creator>Scheyltjens, Isabelle</creator><creator>Duerinck, Johnny</creator><creator>Neyns, Bart</creator><creator>Movahedi, Kiavash</creator><creator>Van Ginderachter, Jo A</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4442-7474</orcidid></search><sort><creationdate>20200204</creationdate><title>Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies</title><author>Pombo Antunes, Ana Rita ; Scheyltjens, Isabelle ; Duerinck, Johnny ; Neyns, Bart ; Movahedi, Kiavash ; Van Ginderachter, Jo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c684t-aad6ae9f635433569d5f1833ea20750ca89e4199697375545454fa8ba2ccd8243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain - cytology</topic><topic>Brain - immunology</topic><topic>Brain - metabolism</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - immunology</topic><topic>Brain Neoplasms - therapy</topic><topic>Cancer</topic><topic>Cancer Biology</topic><topic>Cancer cells</topic><topic>Cancer immunotherapy</topic><topic>Cancer therapies</topic><topic>Cancer treatment</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - cytology</topic><topic>Dendritic Cells - immunology</topic><topic>Destruction</topic><topic>Glioblastoma</topic><topic>Glioblastoma - immunology</topic><topic>Glioblastoma - therapy</topic><topic>Glioblastomas</topic><topic>Gliomas</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Immune response</topic><topic>Immunogenicity</topic><topic>Immunoglobulins</topic><topic>Immunoregulation</topic><topic>Immunostimulation</topic><topic>Immunosuppressive agents</topic><topic>Immunotherapy</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - immunology</topic><topic>Melanoma</topic><topic>microenvironment</topic><topic>Nivolumab</topic><topic>Ontogeny</topic><topic>Pembrolizumab</topic><topic>Radiation therapy</topic><topic>regulatory T cell</topic><topic>Review</topic><topic>Spatial distribution</topic><topic>Stem cells</topic><topic>T cells</topic><topic>T-Lymphocytes, Regulatory - cytology</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>Tumor Microenvironment - immunology</topic><topic>tumor-associated dendritic cell</topic><topic>tumor-associated macrophage</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pombo Antunes, Ana Rita</creatorcontrib><creatorcontrib>Scheyltjens, Isabelle</creatorcontrib><creatorcontrib>Duerinck, Johnny</creatorcontrib><creatorcontrib>Neyns, Bart</creatorcontrib><creatorcontrib>Movahedi, Kiavash</creatorcontrib><creatorcontrib>Van Ginderachter, Jo A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pombo Antunes, Ana Rita</au><au>Scheyltjens, Isabelle</au><au>Duerinck, Johnny</au><au>Neyns, Bart</au><au>Movahedi, Kiavash</au><au>Van Ginderachter, Jo A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>9</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Cancer immunotherapy by immune checkpoint blockade has proven its great potential by saving the lives of a proportion of late stage patients with immunogenic tumor types. However, even in these sensitive tumor types, the majority of patients do not sufficiently respond to the therapy. Furthermore, other tumor types, including glioblastoma, remain largely refractory. The glioblastoma immune microenvironment is recognized as highly immunosuppressive, posing a major hurdle for inducing immune-mediated destruction of cancer cells. Scattered information is available about the presence and activity of immunosuppressive or immunostimulatory cell types in glioblastoma tumors, including tumor-associated macrophages, tumor-infiltrating dendritic cells and regulatory T cells. These cell types are heterogeneous at the level of ontogeny, spatial distribution and functionality within the tumor immune compartment, providing insight in the complex cellular and molecular interplay that determines the immune refractory state in glioblastoma. This knowledge may also yield next generation molecular targets for therapeutic intervention.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>32014107</pmid><doi>10.7554/elife.52176</doi><orcidid>https://orcid.org/0000-0002-4442-7474</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2020-02, Vol.9 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bdbc95f3f2d646099ade0c71834ee533 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Brain - cytology Brain - immunology Brain - metabolism Brain cancer Brain Neoplasms - immunology Brain Neoplasms - therapy Cancer Cancer Biology Cancer cells Cancer immunotherapy Cancer therapies Cancer treatment Dendritic cells Dendritic Cells - cytology Dendritic Cells - immunology Destruction Glioblastoma Glioblastoma - immunology Glioblastoma - therapy Glioblastomas Gliomas Health aspects Humans Immune checkpoint Immune response Immunogenicity Immunoglobulins Immunoregulation Immunostimulation Immunosuppressive agents Immunotherapy Lymphocytes Lymphocytes T Macrophages Macrophages - cytology Macrophages - immunology Melanoma microenvironment Nivolumab Ontogeny Pembrolizumab Radiation therapy regulatory T cell Review Spatial distribution Stem cells T cells T-Lymphocytes, Regulatory - cytology T-Lymphocytes, Regulatory - immunology Tumor Microenvironment - immunology tumor-associated dendritic cell tumor-associated macrophage Tumors |
title | Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20glioblastoma%20immune%20microenvironment%20as%20basis%20for%20the%20development%20of%20new%20immunotherapeutic%20strategies&rft.jtitle=eLife&rft.au=Pombo%20Antunes,%20Ana%20Rita&rft.date=2020-02-04&rft.volume=9&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.52176&rft_dat=%3Cgale_doaj_%3EA613171821%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c684t-aad6ae9f635433569d5f1833ea20750ca89e4199697375545454fa8ba2ccd8243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2368518028&rft_id=info:pmid/32014107&rft_galeid=A613171821&rfr_iscdi=true |