Loading…

Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance

Cardiac magnetic resonance (CMR) imaging enables a one-stop assessment of heart structure and function. Artificial intelligence (AI) can simplify and automate work flows and improve image post-processing speed and diagnostic accuracy; thus, it greatly affects many aspects of CMR. This review highlig...

Full description

Saved in:
Bibliographic Details
Published in:Reviews in cardiovascular medicine 2024-12, Vol.25 (12), p.447
Main Authors: Le, Yinghui, Zhao, Chongshang, An, Jing, Zhou, Jiali, Deng, Dongdong, He, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c340t-caac75ca5b106c5dbf3e6b9a8043e5998c2665866cf4c22f4400971e9ebbe7003
container_end_page
container_issue 12
container_start_page 447
container_title Reviews in cardiovascular medicine
container_volume 25
creator Le, Yinghui
Zhao, Chongshang
An, Jing
Zhou, Jiali
Deng, Dongdong
He, Yi
description Cardiac magnetic resonance (CMR) imaging enables a one-stop assessment of heart structure and function. Artificial intelligence (AI) can simplify and automate work flows and improve image post-processing speed and diagnostic accuracy; thus, it greatly affects many aspects of CMR. This review highlights the application of AI for left heart analysis in CMR, including quality control, image segmentation, and global and regional functional assessment. Most recent research has focused on segmentation of the left ventricular myocardium and blood pool. Although many algorithms have shown a level comparable to that of human experts, some problems, such as poor performance of basal and apical segmentation and false identification of myocardial structure, remain. Segmentation of myocardial fibrosis is another research hotspot, and most patient cohorts of such studies have hypertrophic cardiomyopathy. Whether the above methods are applicable to other patient groups requires further study. The use of automated CMR interpretation for the diagnosis and prognosis assessment of cardiovascular diseases demonstrates great clinical potential. However, prospective large-scale clinical trials are needed to investigate the real-word application of AI technology in clinical practice.
doi_str_mv 10.31083/j.rcm2512447
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bdbf61e3c95142c09719b9f02b2dd40f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bdbf61e3c95142c09719b9f02b2dd40f</doaj_id><sourcerecordid>3150834890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-caac75ca5b106c5dbf3e6b9a8043e5998c2665866cf4c22f4400971e9ebbe7003</originalsourceid><addsrcrecordid>eNpVkc1vEzEQxS0EoqFw5Ip85LLF37s-oSgqECkIhICr5fWOt442drA3SPnvcZJS6Mkjz_Nv5vkh9JqSG05Jx99tb7LbMUmZEO0TtGBU8qajrXiKFrUkjZKSXKEXpWwJ4Ux2_Dm64roVjFGxQMevOY0ZSsEh4vkO8GoKMTg74eV-P9ViDini5PEyz8EHF2pnHWeYpjBCdIB9yngDfsY_Ic45uAnwMtrpWMIZubJ5CNbhz3aMMAeHv0FJ0daXL9Ezb6cCr-7Pa_Tjw-331adm8-XjerXcNI4LMjfOWtdKZ2VPiXJy6D0H1WvbEcFBat05ppTslHJeOMa8EIToloKGvoe2Wr5G6wt3SHZr9jnsbD6aZIM5X6Q8Glu91cVNX-mKAndaUsHciaN77Qnr2TAI4ivr_YW1P_Q7GNzJsp0eQR93YrgzY_ptKFUdb4mqhLf3hJx-HaDMZheKq99pI6RDMZzKGqro9Gnx5iJ1OZWSwT_MocScszdb8y_7qn_z_3IP6r9h8z9aiqzP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150834890</pqid></control><display><type>article</type><title>Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance</title><source>Open Access: PubMed Central</source><creator>Le, Yinghui ; Zhao, Chongshang ; An, Jing ; Zhou, Jiali ; Deng, Dongdong ; He, Yi</creator><creatorcontrib>Le, Yinghui ; Zhao, Chongshang ; An, Jing ; Zhou, Jiali ; Deng, Dongdong ; He, Yi</creatorcontrib><description>Cardiac magnetic resonance (CMR) imaging enables a one-stop assessment of heart structure and function. Artificial intelligence (AI) can simplify and automate work flows and improve image post-processing speed and diagnostic accuracy; thus, it greatly affects many aspects of CMR. This review highlights the application of AI for left heart analysis in CMR, including quality control, image segmentation, and global and regional functional assessment. Most recent research has focused on segmentation of the left ventricular myocardium and blood pool. Although many algorithms have shown a level comparable to that of human experts, some problems, such as poor performance of basal and apical segmentation and false identification of myocardial structure, remain. Segmentation of myocardial fibrosis is another research hotspot, and most patient cohorts of such studies have hypertrophic cardiomyopathy. Whether the above methods are applicable to other patient groups requires further study. The use of automated CMR interpretation for the diagnosis and prognosis assessment of cardiovascular diseases demonstrates great clinical potential. However, prospective large-scale clinical trials are needed to investigate the real-word application of AI technology in clinical practice.</description><identifier>ISSN: 1530-6550</identifier><identifier>ISSN: 2153-8174</identifier><identifier>EISSN: 2153-8174</identifier><identifier>DOI: 10.31083/j.rcm2512447</identifier><identifier>PMID: 39742214</identifier><language>eng</language><publisher>Singapore: IMR Press</publisher><subject>artificial intelligence ; cardiovascular magnetic resonance ; left ventricle ; Review</subject><ispartof>Reviews in cardiovascular medicine, 2024-12, Vol.25 (12), p.447</ispartof><rights>Copyright: © 2024 The Author(s). Published by IMR Press.</rights><rights>Copyright: © 2024 The Author(s). Published by IMR Press. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-caac75ca5b106c5dbf3e6b9a8043e5998c2665866cf4c22f4400971e9ebbe7003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683706/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683706/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39742214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Le, Yinghui</creatorcontrib><creatorcontrib>Zhao, Chongshang</creatorcontrib><creatorcontrib>An, Jing</creatorcontrib><creatorcontrib>Zhou, Jiali</creatorcontrib><creatorcontrib>Deng, Dongdong</creatorcontrib><creatorcontrib>He, Yi</creatorcontrib><title>Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance</title><title>Reviews in cardiovascular medicine</title><addtitle>Rev Cardiovasc Med</addtitle><description>Cardiac magnetic resonance (CMR) imaging enables a one-stop assessment of heart structure and function. Artificial intelligence (AI) can simplify and automate work flows and improve image post-processing speed and diagnostic accuracy; thus, it greatly affects many aspects of CMR. This review highlights the application of AI for left heart analysis in CMR, including quality control, image segmentation, and global and regional functional assessment. Most recent research has focused on segmentation of the left ventricular myocardium and blood pool. Although many algorithms have shown a level comparable to that of human experts, some problems, such as poor performance of basal and apical segmentation and false identification of myocardial structure, remain. Segmentation of myocardial fibrosis is another research hotspot, and most patient cohorts of such studies have hypertrophic cardiomyopathy. Whether the above methods are applicable to other patient groups requires further study. The use of automated CMR interpretation for the diagnosis and prognosis assessment of cardiovascular diseases demonstrates great clinical potential. However, prospective large-scale clinical trials are needed to investigate the real-word application of AI technology in clinical practice.</description><subject>artificial intelligence</subject><subject>cardiovascular magnetic resonance</subject><subject>left ventricle</subject><subject>Review</subject><issn>1530-6550</issn><issn>2153-8174</issn><issn>2153-8174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1vEzEQxS0EoqFw5Ip85LLF37s-oSgqECkIhICr5fWOt442drA3SPnvcZJS6Mkjz_Nv5vkh9JqSG05Jx99tb7LbMUmZEO0TtGBU8qajrXiKFrUkjZKSXKEXpWwJ4Ux2_Dm64roVjFGxQMevOY0ZSsEh4vkO8GoKMTg74eV-P9ViDini5PEyz8EHF2pnHWeYpjBCdIB9yngDfsY_Ic45uAnwMtrpWMIZubJ5CNbhz3aMMAeHv0FJ0daXL9Ezb6cCr-7Pa_Tjw-331adm8-XjerXcNI4LMjfOWtdKZ2VPiXJy6D0H1WvbEcFBat05ppTslHJeOMa8EIToloKGvoe2Wr5G6wt3SHZr9jnsbD6aZIM5X6Q8Glu91cVNX-mKAndaUsHciaN77Qnr2TAI4ivr_YW1P_Q7GNzJsp0eQR93YrgzY_ptKFUdb4mqhLf3hJx-HaDMZheKq99pI6RDMZzKGqro9Gnx5iJ1OZWSwT_MocScszdb8y_7qn_z_3IP6r9h8z9aiqzP</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Le, Yinghui</creator><creator>Zhao, Chongshang</creator><creator>An, Jing</creator><creator>Zhou, Jiali</creator><creator>Deng, Dongdong</creator><creator>He, Yi</creator><general>IMR Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>202412</creationdate><title>Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance</title><author>Le, Yinghui ; Zhao, Chongshang ; An, Jing ; Zhou, Jiali ; Deng, Dongdong ; He, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-caac75ca5b106c5dbf3e6b9a8043e5998c2665866cf4c22f4400971e9ebbe7003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial intelligence</topic><topic>cardiovascular magnetic resonance</topic><topic>left ventricle</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Yinghui</creatorcontrib><creatorcontrib>Zhao, Chongshang</creatorcontrib><creatorcontrib>An, Jing</creatorcontrib><creatorcontrib>Zhou, Jiali</creatorcontrib><creatorcontrib>Deng, Dongdong</creatorcontrib><creatorcontrib>He, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Reviews in cardiovascular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Yinghui</au><au>Zhao, Chongshang</au><au>An, Jing</au><au>Zhou, Jiali</au><au>Deng, Dongdong</au><au>He, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance</atitle><jtitle>Reviews in cardiovascular medicine</jtitle><addtitle>Rev Cardiovasc Med</addtitle><date>2024-12</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>447</spage><pages>447-</pages><issn>1530-6550</issn><issn>2153-8174</issn><eissn>2153-8174</eissn><abstract>Cardiac magnetic resonance (CMR) imaging enables a one-stop assessment of heart structure and function. Artificial intelligence (AI) can simplify and automate work flows and improve image post-processing speed and diagnostic accuracy; thus, it greatly affects many aspects of CMR. This review highlights the application of AI for left heart analysis in CMR, including quality control, image segmentation, and global and regional functional assessment. Most recent research has focused on segmentation of the left ventricular myocardium and blood pool. Although many algorithms have shown a level comparable to that of human experts, some problems, such as poor performance of basal and apical segmentation and false identification of myocardial structure, remain. Segmentation of myocardial fibrosis is another research hotspot, and most patient cohorts of such studies have hypertrophic cardiomyopathy. Whether the above methods are applicable to other patient groups requires further study. The use of automated CMR interpretation for the diagnosis and prognosis assessment of cardiovascular diseases demonstrates great clinical potential. However, prospective large-scale clinical trials are needed to investigate the real-word application of AI technology in clinical practice.</abstract><cop>Singapore</cop><pub>IMR Press</pub><pmid>39742214</pmid><doi>10.31083/j.rcm2512447</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6550
ispartof Reviews in cardiovascular medicine, 2024-12, Vol.25 (12), p.447
issn 1530-6550
2153-8174
2153-8174
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bdbf61e3c95142c09719b9f02b2dd40f
source Open Access: PubMed Central
subjects artificial intelligence
cardiovascular magnetic resonance
left ventricle
Review
title Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20in%20the%20Clinical%20Application%20of%20Artificial%20Intelligence%20for%20Left%20Ventricle%20Analysis%20in%20Cardiac%20Magnetic%20Resonance&rft.jtitle=Reviews%20in%20cardiovascular%20medicine&rft.au=Le,%20Yinghui&rft.date=2024-12&rft.volume=25&rft.issue=12&rft.spage=447&rft.pages=447-&rft.issn=1530-6550&rft.eissn=2153-8174&rft_id=info:doi/10.31083/j.rcm2512447&rft_dat=%3Cproquest_doaj_%3E3150834890%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-caac75ca5b106c5dbf3e6b9a8043e5998c2665866cf4c22f4400971e9ebbe7003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3150834890&rft_id=info:pmid/39742214&rfr_iscdi=true