Loading…

Enhancing quantum teleportation efficacy with noiseless linear amplification

Quantum teleportation constitutes a fundamental tool for various applications in quantum communication and computation. However, state-of-the-art continuous-variable quantum teleportation is restricted to moderate fidelities and short-distance configurations. This is due to unavoidable experimental...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-08, Vol.14 (1), p.4745-4745, Article 4745
Main Authors: Zhao, Jie, Jeng, Hao, Conlon, Lorcán O., Tserkis, Spyros, Shajilal, Biveen, Liu, Kui, Ralph, Timothy C., Assad, Syed M., Lam, Ping Koy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantum teleportation constitutes a fundamental tool for various applications in quantum communication and computation. However, state-of-the-art continuous-variable quantum teleportation is restricted to moderate fidelities and short-distance configurations. This is due to unavoidable experimental imperfections resulting in thermal decoherence during the teleportation process. Here we present a heralded quantum teleporter able to overcome these limitations through noiseless linear amplification. As a result, we report a high fidelity of 92% for teleporting coherent states using a modest level of quantum entanglement. Our teleporter in principle allows nearly complete removal of loss induced onto the input states being transmitted through imperfect quantum channels. We further demonstrate the purification of a displaced thermal state, impossible via conventional deterministic amplification or teleportation approaches. The combination of high-fidelity coherent state teleportation alongside the purification of thermalized input states permits the transmission of quantum states over significantly long distances. These results are of both practical and fundamental significance; overcoming long-standing hurdles en route to highly-efficient continuous-variable quantum teleportation, while also shining new light on applying teleportation to purify quantum systems from thermal noise. Continuous-variable quantum networks are easier to implement than discrete-variable ones, but suffer from a lower teleportation fidelity. Here, the authors demonstrate a CV teleportation protocol exploiting heralded noiseless amplification to increase the fidelity, at the expense of probabilistic operation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-40438-z