Loading…

Mechanisms involved in suppression of osteoclast supportive activity by transforming growth factor-β1 via the ubiquitin-proteasome system

Orthodontic treatment requires the regulation of bone remodeling in both compression and tension sides. Transforming growth factor-β1 (TGF-β1) is an important coupling factor for bone remodeling. However, the mechanism underlying the TGF-β1-mediated regulation of the osteoclast-supporting activity o...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-01, Vol.17 (2)
Main Authors: Momoko Inoue, Yoshie Nagai-Yoshioka, Ryota Yamasaki, Tatsuo Kawamoto, Tatsuji Nishihara, Wataru Ariyoshi
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Orthodontic treatment requires the regulation of bone remodeling in both compression and tension sides. Transforming growth factor-β1 (TGF-β1) is an important coupling factor for bone remodeling. However, the mechanism underlying the TGF-β1-mediated regulation of the osteoclast-supporting activity of osteoblasts and stromal cells remain unclear. The current study investigated the effect of TGF-β1 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in stromal cells induced by 1α,25(OH)2D3 (D3) and dexamethasone (Dex). TGF-β1 downregulated the expression of RANKL induced by D3 and Dex in mouse bone marrow stromal lineage, ST2 cells. Co-culture system revealed that TGF-β1 suppressed osteoclast differentiation from bone marrow cell induced by D3 and Dex-activated ST2 cells. The inhibitory effect of TGF-β1 on RANKL expression was recovered by inhibiting the interaction between TGF-β1 and the TGF-β type I/activin receptor or by downregulating of smad2/3 expression. Interestingly, TGF-β1 degraded the retinoid X receptor (RXR)-α protein which forms a complex with vitamin D receptor (VDR) and regulates transcriptional activity of RANKL without affecting nuclear translocation of VDR and phosphorylation of signal transducer and activator of transcription3 (STAT3). The degradation of RXR-α protein by TGF-β1 was recovered by a ubiquitin-proteasome inhibitor. We also observed that poly-ubiquitination of RXR-α protein was induced by TGF-β1 treatment. These results indicated that TGF-β1 downregulates RANKL expression and the osteoclast-supporting activity of osteoblasts/stromal cells induced by D3 and Dex through the degradation of the RXR-α protein mediated by ubiquitin-proteasome system.
ISSN:1932-6203