Loading…

Computational Approaches to Evaluate the Acetylcholinesterase Binding Interaction with Taxifolin for the Management of Alzheimer's Disease

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that break down and reduce the level of the neurotransmitter acetylcholine (ACh). This can cause a variety of cognitive and neurological problems, including Alzheimer's disease. Taxifolin is a natural phytochemical general...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2024-01, Vol.29 (3), p.674
Main Authors: Ahmad, Varish, Alotibi, Ibrahim, Alghamdi, Anwar A, Ahmad, Aftab, Jamal, Qazi Mohammad Sajid, Srivastava, Supriya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that break down and reduce the level of the neurotransmitter acetylcholine (ACh). This can cause a variety of cognitive and neurological problems, including Alzheimer's disease. Taxifolin is a natural phytochemical generally found in yew tree bark and has significant pharmacological properties, such as being anti-cancer, anti-inflammatory, and antioxidant. The binding affinity and inhibitory potency of taxifolin to these enzymes were evaluated through molecular docking and molecular dynamics simulations followed by the MMPBSA approach, and the results were significant. Taxifolin's affinity for binding to the AChE-taxifolin complex was -8.85 kcal/mol, with an inhibition constant of 326.70 nM. It was observed to interact through hydrogen bonds. In contrast, the BChE-taxifolin complex binding energy was observed to be -7.42 kcal/mol, and it was significantly nearly equal to the standard inhibitor donepezil. The molecular dynamics and simulation signified the observed interactions of taxifolin with the studied enzymes. The MMPBSA total free energy of binding for AChE-taxifolin was -24.34 kcal/mol, while BChE-taxifolin was -16.14 kcal/mol. The present research suggests that taxifolin has a strong ability to bind and inhibit AChE and BChE and could be used to manage neuron-associated problems; however, further research is required to explore taxifolin's neurological therapeutic potential using animal models of Alzheimer's disease.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29030674