Loading…
Optimizing Session-Aware Recommenders: A Deep Dive into GRU-Based Latent Interaction Integration
This study introduces session-aware recommendation models, leveraging GRU (Gated Recurrent Unit) and attention mechanisms for advanced latent interaction data integration. A primary advancement is enhancing latent context, a critical factor for boosting recommendation accuracy. We address the existi...
Saved in:
Published in: | Future internet 2024-02, Vol.16 (2), p.51 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study introduces session-aware recommendation models, leveraging GRU (Gated Recurrent Unit) and attention mechanisms for advanced latent interaction data integration. A primary advancement is enhancing latent context, a critical factor for boosting recommendation accuracy. We address the existing models’ rigidity by dynamically blending short-term (most recent) and long-term (historical) preferences, moving beyond static period definitions. Our approaches, pre-combination (LCII-Pre) and post-combination (LCII-Post), with fixed (Fix) and flexible learning (LP) weight configurations, are thoroughly evaluated. We conducted extensive experiments to assess our models’ performance on public datasets such as Amazon and MovieLens 1M. Notably, on the MovieLens 1M dataset, LCII-PreFix achieved a 1.85% and 2.54% higher Recall@20 than II-RNN and BERT4Rec+st+TSA, respectively. On the Steam dataset, LCII-PostLP outperformed these models by 18.66% and 5.5%. Furthermore, on the Amazon dataset, LCII showed a 2.59% and 1.89% improvement in Recall@20 over II-RNN and CAII. These results affirm the significant enhancement our models bring to session-aware recommendation systems, showcasing their potential for both academic and practical applications in the field. |
---|---|
ISSN: | 1999-5903 1999-5903 |
DOI: | 10.3390/fi16020051 |