Loading…

Power System Load Forecasting Method Based on Recurrent Neural Network

Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy a...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2020-01, Vol.182, p.2007
Main Authors: Pang, Chuanjun, Bao, Tie, He, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773
container_end_page
container_issue
container_start_page 2007
container_title E3S web of conferences
container_volume 182
creator Pang, Chuanjun
Bao, Tie
He, Lei
description Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy and stability of load forecasting. A load forecasting method based on long-short term memory (LSTM) is proposed. This method uses deep recurrent neural network from the artificial intelligence field to establish a load forecasting model. Using the LSTM network to memorize the long-term dependence of the sequence data, the intrinsic variation of the load itself is identified from both the horizontal and vertical dimensions within a longer historical time period, while considering various influencing factors. Actual load data is used to verify the forecasting performance of different historical date windows and different network architectures.
doi_str_mv 10.1051/e3sconf/202018202007
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_be16067affa4448c95dfbecde52eea63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_be16067affa4448c95dfbecde52eea63</doaj_id><sourcerecordid>2429437620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIVKV_wMES54Dt-JEcoaJQqTzE42w59rqktHGxE1X9e1JaoV52RqvR7GgHoUtKrikR9AbyZEPjbxhhhBa7SdQJGjAmVUYZZ6dH_ByNUloQQigTBSd8gCavYQMRv29TCys8C8bhSYhgTWrrZo6foP0KDt-ZBA6HBr-B7WKEpsXP0EWz7KHdhPh9gc68WSYYHXCIPif3H-PHbPbyMB3fzjLLhFCZpEoS60vwxHmujKtoVfJSEGWpzYV3BVWMV5wKU3HvhJLUceOgZ7kvlMqHaLr3dcEs9DrWKxO3Opha_y1CnGsT29ouQVdAJZHKeG8454UthfMVWAeCARiZ915Xe691DD8dpFYvQhebPr7uX1XyXElGehXfq2wMKUXw_1cp0bsC9KEAfVxA_guZUnmM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429437620</pqid></control><display><type>article</type><title>Power System Load Forecasting Method Based on Recurrent Neural Network</title><source>Publicly Available Content Database</source><creator>Pang, Chuanjun ; Bao, Tie ; He, Lei</creator><contributor>Popescu, M. ; Kolhe, M.L. ; Li, H. ; Sutheerasak, E. ; Cale, J. ; Ogura, K. ; Mirsaeidi, S.</contributor><creatorcontrib>Pang, Chuanjun ; Bao, Tie ; He, Lei ; Popescu, M. ; Kolhe, M.L. ; Li, H. ; Sutheerasak, E. ; Cale, J. ; Ogura, K. ; Mirsaeidi, S.</creatorcontrib><description>Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy and stability of load forecasting. A load forecasting method based on long-short term memory (LSTM) is proposed. This method uses deep recurrent neural network from the artificial intelligence field to establish a load forecasting model. Using the LSTM network to memorize the long-term dependence of the sequence data, the intrinsic variation of the load itself is identified from both the horizontal and vertical dimensions within a longer historical time period, while considering various influencing factors. Actual load data is used to verify the forecasting performance of different historical date windows and different network architectures.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202018202007</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Artificial intelligence ; Computer architecture ; Distributed generation ; Electric power systems ; Electrical loads ; Electricity consumption ; Forecasting ; Long short-term memory ; Mathematical models ; Neural networks ; Power consumption ; Recurrent neural networks</subject><ispartof>E3S web of conferences, 2020-01, Vol.182, p.2007</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429437620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Popescu, M.</contributor><contributor>Kolhe, M.L.</contributor><contributor>Li, H.</contributor><contributor>Sutheerasak, E.</contributor><contributor>Cale, J.</contributor><contributor>Ogura, K.</contributor><contributor>Mirsaeidi, S.</contributor><creatorcontrib>Pang, Chuanjun</creatorcontrib><creatorcontrib>Bao, Tie</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><title>Power System Load Forecasting Method Based on Recurrent Neural Network</title><title>E3S web of conferences</title><description>Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy and stability of load forecasting. A load forecasting method based on long-short term memory (LSTM) is proposed. This method uses deep recurrent neural network from the artificial intelligence field to establish a load forecasting model. Using the LSTM network to memorize the long-term dependence of the sequence data, the intrinsic variation of the load itself is identified from both the horizontal and vertical dimensions within a longer historical time period, while considering various influencing factors. Actual load data is used to verify the forecasting performance of different historical date windows and different network architectures.</description><subject>Artificial intelligence</subject><subject>Computer architecture</subject><subject>Distributed generation</subject><subject>Electric power systems</subject><subject>Electrical loads</subject><subject>Electricity consumption</subject><subject>Forecasting</subject><subject>Long short-term memory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Power consumption</subject><subject>Recurrent neural networks</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQtBBIVKV_wMES54Dt-JEcoaJQqTzE42w59rqktHGxE1X9e1JaoV52RqvR7GgHoUtKrikR9AbyZEPjbxhhhBa7SdQJGjAmVUYZZ6dH_ByNUloQQigTBSd8gCavYQMRv29TCys8C8bhSYhgTWrrZo6foP0KDt-ZBA6HBr-B7WKEpsXP0EWz7KHdhPh9gc68WSYYHXCIPif3H-PHbPbyMB3fzjLLhFCZpEoS60vwxHmujKtoVfJSEGWpzYV3BVWMV5wKU3HvhJLUceOgZ7kvlMqHaLr3dcEs9DrWKxO3Opha_y1CnGsT29ouQVdAJZHKeG8454UthfMVWAeCARiZ915Xe691DD8dpFYvQhebPr7uX1XyXElGehXfq2wMKUXw_1cp0bsC9KEAfVxA_guZUnmM</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Pang, Chuanjun</creator><creator>Bao, Tie</creator><creator>He, Lei</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>Power System Load Forecasting Method Based on Recurrent Neural Network</title><author>Pang, Chuanjun ; Bao, Tie ; He, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Computer architecture</topic><topic>Distributed generation</topic><topic>Electric power systems</topic><topic>Electrical loads</topic><topic>Electricity consumption</topic><topic>Forecasting</topic><topic>Long short-term memory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Power consumption</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Chuanjun</creatorcontrib><creatorcontrib>Bao, Tie</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Chuanjun</au><au>Bao, Tie</au><au>He, Lei</au><au>Popescu, M.</au><au>Kolhe, M.L.</au><au>Li, H.</au><au>Sutheerasak, E.</au><au>Cale, J.</au><au>Ogura, K.</au><au>Mirsaeidi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power System Load Forecasting Method Based on Recurrent Neural Network</atitle><jtitle>E3S web of conferences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>182</volume><spage>2007</spage><pages>2007-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy and stability of load forecasting. A load forecasting method based on long-short term memory (LSTM) is proposed. This method uses deep recurrent neural network from the artificial intelligence field to establish a load forecasting model. Using the LSTM network to memorize the long-term dependence of the sequence data, the intrinsic variation of the load itself is identified from both the horizontal and vertical dimensions within a longer historical time period, while considering various influencing factors. Actual load data is used to verify the forecasting performance of different historical date windows and different network architectures.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202018202007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S web of conferences, 2020-01, Vol.182, p.2007
issn 2267-1242
2555-0403
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_be16067affa4448c95dfbecde52eea63
source Publicly Available Content Database
subjects Artificial intelligence
Computer architecture
Distributed generation
Electric power systems
Electrical loads
Electricity consumption
Forecasting
Long short-term memory
Mathematical models
Neural networks
Power consumption
Recurrent neural networks
title Power System Load Forecasting Method Based on Recurrent Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20System%20Load%20Forecasting%20Method%20Based%20on%20Recurrent%20Neural%20Network&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Pang,%20Chuanjun&rft.date=2020-01-01&rft.volume=182&rft.spage=2007&rft.pages=2007-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202018202007&rft_dat=%3Cproquest_doaj_%3E2429437620%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429437620&rft_id=info:pmid/&rfr_iscdi=true