Loading…
Power System Load Forecasting Method Based on Recurrent Neural Network
Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy a...
Saved in:
Published in: | E3S web of conferences 2020-01, Vol.182, p.2007 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773 |
container_end_page | |
container_issue | |
container_start_page | 2007 |
container_title | E3S web of conferences |
container_volume | 182 |
creator | Pang, Chuanjun Bao, Tie He, Lei |
description | Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy and stability of load forecasting. A load forecasting method based on long-short term memory (LSTM) is proposed. This method uses deep recurrent neural network from the artificial intelligence field to establish a load forecasting model. Using the LSTM network to memorize the long-term dependence of the sequence data, the intrinsic variation of the load itself is identified from both the horizontal and vertical dimensions within a longer historical time period, while considering various influencing factors. Actual load data is used to verify the forecasting performance of different historical date windows and different network architectures. |
doi_str_mv | 10.1051/e3sconf/202018202007 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_be16067affa4448c95dfbecde52eea63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_be16067affa4448c95dfbecde52eea63</doaj_id><sourcerecordid>2429437620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIVKV_wMES54Dt-JEcoaJQqTzE42w59rqktHGxE1X9e1JaoV52RqvR7GgHoUtKrikR9AbyZEPjbxhhhBa7SdQJGjAmVUYZZ6dH_ByNUloQQigTBSd8gCavYQMRv29TCys8C8bhSYhgTWrrZo6foP0KDt-ZBA6HBr-B7WKEpsXP0EWz7KHdhPh9gc68WSYYHXCIPif3H-PHbPbyMB3fzjLLhFCZpEoS60vwxHmujKtoVfJSEGWpzYV3BVWMV5wKU3HvhJLUceOgZ7kvlMqHaLr3dcEs9DrWKxO3Opha_y1CnGsT29ouQVdAJZHKeG8454UthfMVWAeCARiZ915Xe691DD8dpFYvQhebPr7uX1XyXElGehXfq2wMKUXw_1cp0bsC9KEAfVxA_guZUnmM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429437620</pqid></control><display><type>article</type><title>Power System Load Forecasting Method Based on Recurrent Neural Network</title><source>Publicly Available Content Database</source><creator>Pang, Chuanjun ; Bao, Tie ; He, Lei</creator><contributor>Popescu, M. ; Kolhe, M.L. ; Li, H. ; Sutheerasak, E. ; Cale, J. ; Ogura, K. ; Mirsaeidi, S.</contributor><creatorcontrib>Pang, Chuanjun ; Bao, Tie ; He, Lei ; Popescu, M. ; Kolhe, M.L. ; Li, H. ; Sutheerasak, E. ; Cale, J. ; Ogura, K. ; Mirsaeidi, S.</creatorcontrib><description>Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy and stability of load forecasting. A load forecasting method based on long-short term memory (LSTM) is proposed. This method uses deep recurrent neural network from the artificial intelligence field to establish a load forecasting model. Using the LSTM network to memorize the long-term dependence of the sequence data, the intrinsic variation of the load itself is identified from both the horizontal and vertical dimensions within a longer historical time period, while considering various influencing factors. Actual load data is used to verify the forecasting performance of different historical date windows and different network architectures.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202018202007</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Artificial intelligence ; Computer architecture ; Distributed generation ; Electric power systems ; Electrical loads ; Electricity consumption ; Forecasting ; Long short-term memory ; Mathematical models ; Neural networks ; Power consumption ; Recurrent neural networks</subject><ispartof>E3S web of conferences, 2020-01, Vol.182, p.2007</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429437620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Popescu, M.</contributor><contributor>Kolhe, M.L.</contributor><contributor>Li, H.</contributor><contributor>Sutheerasak, E.</contributor><contributor>Cale, J.</contributor><contributor>Ogura, K.</contributor><contributor>Mirsaeidi, S.</contributor><creatorcontrib>Pang, Chuanjun</creatorcontrib><creatorcontrib>Bao, Tie</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><title>Power System Load Forecasting Method Based on Recurrent Neural Network</title><title>E3S web of conferences</title><description>Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy and stability of load forecasting. A load forecasting method based on long-short term memory (LSTM) is proposed. This method uses deep recurrent neural network from the artificial intelligence field to establish a load forecasting model. Using the LSTM network to memorize the long-term dependence of the sequence data, the intrinsic variation of the load itself is identified from both the horizontal and vertical dimensions within a longer historical time period, while considering various influencing factors. Actual load data is used to verify the forecasting performance of different historical date windows and different network architectures.</description><subject>Artificial intelligence</subject><subject>Computer architecture</subject><subject>Distributed generation</subject><subject>Electric power systems</subject><subject>Electrical loads</subject><subject>Electricity consumption</subject><subject>Forecasting</subject><subject>Long short-term memory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Power consumption</subject><subject>Recurrent neural networks</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQtBBIVKV_wMES54Dt-JEcoaJQqTzE42w59rqktHGxE1X9e1JaoV52RqvR7GgHoUtKrikR9AbyZEPjbxhhhBa7SdQJGjAmVUYZZ6dH_ByNUloQQigTBSd8gCavYQMRv29TCys8C8bhSYhgTWrrZo6foP0KDt-ZBA6HBr-B7WKEpsXP0EWz7KHdhPh9gc68WSYYHXCIPif3H-PHbPbyMB3fzjLLhFCZpEoS60vwxHmujKtoVfJSEGWpzYV3BVWMV5wKU3HvhJLUceOgZ7kvlMqHaLr3dcEs9DrWKxO3Opha_y1CnGsT29ouQVdAJZHKeG8454UthfMVWAeCARiZ915Xe691DD8dpFYvQhebPr7uX1XyXElGehXfq2wMKUXw_1cp0bsC9KEAfVxA_guZUnmM</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Pang, Chuanjun</creator><creator>Bao, Tie</creator><creator>He, Lei</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>Power System Load Forecasting Method Based on Recurrent Neural Network</title><author>Pang, Chuanjun ; Bao, Tie ; He, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Computer architecture</topic><topic>Distributed generation</topic><topic>Electric power systems</topic><topic>Electrical loads</topic><topic>Electricity consumption</topic><topic>Forecasting</topic><topic>Long short-term memory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Power consumption</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Chuanjun</creatorcontrib><creatorcontrib>Bao, Tie</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Chuanjun</au><au>Bao, Tie</au><au>He, Lei</au><au>Popescu, M.</au><au>Kolhe, M.L.</au><au>Li, H.</au><au>Sutheerasak, E.</au><au>Cale, J.</au><au>Ogura, K.</au><au>Mirsaeidi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power System Load Forecasting Method Based on Recurrent Neural Network</atitle><jtitle>E3S web of conferences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>182</volume><spage>2007</spage><pages>2007-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>Power system load forecasting plays an important role in the power dispatching operation. The development of the electricity market and the increasing integration of distributed generators have increased the complexity of power consumption model and put forward higher requirements for the accuracy and stability of load forecasting. A load forecasting method based on long-short term memory (LSTM) is proposed. This method uses deep recurrent neural network from the artificial intelligence field to establish a load forecasting model. Using the LSTM network to memorize the long-term dependence of the sequence data, the intrinsic variation of the load itself is identified from both the horizontal and vertical dimensions within a longer historical time period, while considering various influencing factors. Actual load data is used to verify the forecasting performance of different historical date windows and different network architectures.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202018202007</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2267-1242 |
ispartof | E3S web of conferences, 2020-01, Vol.182, p.2007 |
issn | 2267-1242 2555-0403 2267-1242 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_be16067affa4448c95dfbecde52eea63 |
source | Publicly Available Content Database |
subjects | Artificial intelligence Computer architecture Distributed generation Electric power systems Electrical loads Electricity consumption Forecasting Long short-term memory Mathematical models Neural networks Power consumption Recurrent neural networks |
title | Power System Load Forecasting Method Based on Recurrent Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20System%20Load%20Forecasting%20Method%20Based%20on%20Recurrent%20Neural%20Network&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Pang,%20Chuanjun&rft.date=2020-01-01&rft.volume=182&rft.spage=2007&rft.pages=2007-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202018202007&rft_dat=%3Cproquest_doaj_%3E2429437620%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2557-61760cf9ef0df47adb1b949507c1c35fd81724b415ab4fd5761d4aded573f8773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429437620&rft_id=info:pmid/&rfr_iscdi=true |