Loading…
Aroma Components Analysis and Origin Differentiation of Black Tea Based on ATD-GC-MS and E-Nose
Black tea (Fuyun 6) samples collected from three regions, Youxi, Fu’an, and Datian, were analysed by automatic thermal desorption-gas chromatography–mass spectrometry (ATD-GC–MS) combined with the electronic nose (E-nose) technique to investigate the aroma composition differences between black teas...
Saved in:
Published in: | Horticulturae 2023-08, Vol.9 (8), p.885 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-dae0e092bb7f79b1d74ca8a2955f3659c9da765d9debcbc5d1a90005d0a8fbec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-dae0e092bb7f79b1d74ca8a2955f3659c9da765d9debcbc5d1a90005d0a8fbec3 |
container_end_page | |
container_issue | 8 |
container_start_page | 885 |
container_title | Horticulturae |
container_volume | 9 |
creator | Huang, Jianfeng Yan, Tingyu Yang, Jiangfan Xu, Hui |
description | Black tea (Fuyun 6) samples collected from three regions, Youxi, Fu’an, and Datian, were analysed by automatic thermal desorption-gas chromatography–mass spectrometry (ATD-GC–MS) combined with the electronic nose (E-nose) technique to investigate the aroma composition differences between black teas from different regions. The response surface methodology was used to optimize the ATD conditions for extracting the aroma components from the black tea. The results revealed that the optimal conditions for aroma component accumulation from black tea samples included a sample weight of 2.8 g, an adsorption time of 39 min, an adsorption temperature of 75 °C, and a cold trap temperature of −30 °C. The ATD-GC–MS analyses identified a total of 71 aroma components in the black tea samples, of which 31 were utilized to differentiate the origins of the black teas. Additional aroma activity analyses indicated that benzyl alcohol, linalool, hexanal, octanal, and nonanal had odour activity values (OAVs) greater than 10. Additionally, the OAV of decanal exceeded 100, indicating its significant contribution to the aroma profile of Fuyun 6 black tea. The E-nose results demonstrated the ability to differentiate the black tea samples from the three different origins. This study successfully identified the specific aroma substances associated with different tea origins, providing valuable insights into the aroma characteristics of black teas from various regions. |
doi_str_mv | 10.3390/horticulturae9080885 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_be2ed4019e204e38961dd4b9ddcbc6fd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762473856</galeid><doaj_id>oai_doaj_org_article_be2ed4019e204e38961dd4b9ddcbc6fd</doaj_id><sourcerecordid>A762473856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-dae0e092bb7f79b1d74ca8a2955f3659c9da765d9debcbc5d1a90005d0a8fbec3</originalsourceid><addsrcrecordid>eNptkU9P3DAQxaOqSEXAN-jBUs-hjh3_O4aFUiQohy5na2KPt95m462dPfDta1iEeqh8GOvNvJ_sN03zuaOXnBv69VfKS3SHaTlkQEM11Vp8aE4Z77pWCdZ__Of-qbkoZUspZbSXUrHTxg457YCs0m6fZpyXQoYZpucSC4HZk8ccN3Em1zEEzLUdYYlpJimQqwncb7JGIFdQ0JOqDuvr9nbVPvx8td60P1LB8-YkwFTw4q2eNU_fbtar7-394-3darhvXc_p0npAitSwcVRBmbHzqneggRkhApfCOONBSeGNx9GNTvgOTP2G8BR0GNHxs-buyPUJtnaf4w7ys00Q7auQ8sbCS04T2hEZ-p52BmsKyLWRnff9aLyvZBl8ZX05svY5_TlgWew2HXKNpVimhaKKKanr1OVxagMVGueQlgyuHo-76GqYIVZ9UJL1imshq6E_GlxOpWQM78_sqH1Zpf3fKvlfgSaVFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857072768</pqid></control><display><type>article</type><title>Aroma Components Analysis and Origin Differentiation of Black Tea Based on ATD-GC-MS and E-Nose</title><source>Publicly Available Content Database</source><creator>Huang, Jianfeng ; Yan, Tingyu ; Yang, Jiangfan ; Xu, Hui</creator><creatorcontrib>Huang, Jianfeng ; Yan, Tingyu ; Yang, Jiangfan ; Xu, Hui</creatorcontrib><description>Black tea (Fuyun 6) samples collected from three regions, Youxi, Fu’an, and Datian, were analysed by automatic thermal desorption-gas chromatography–mass spectrometry (ATD-GC–MS) combined with the electronic nose (E-nose) technique to investigate the aroma composition differences between black teas from different regions. The response surface methodology was used to optimize the ATD conditions for extracting the aroma components from the black tea. The results revealed that the optimal conditions for aroma component accumulation from black tea samples included a sample weight of 2.8 g, an adsorption time of 39 min, an adsorption temperature of 75 °C, and a cold trap temperature of −30 °C. The ATD-GC–MS analyses identified a total of 71 aroma components in the black tea samples, of which 31 were utilized to differentiate the origins of the black teas. Additional aroma activity analyses indicated that benzyl alcohol, linalool, hexanal, octanal, and nonanal had odour activity values (OAVs) greater than 10. Additionally, the OAV of decanal exceeded 100, indicating its significant contribution to the aroma profile of Fuyun 6 black tea. The E-nose results demonstrated the ability to differentiate the black tea samples from the three different origins. This study successfully identified the specific aroma substances associated with different tea origins, providing valuable insights into the aroma characteristics of black teas from various regions.</description><identifier>ISSN: 2311-7524</identifier><identifier>EISSN: 2311-7524</identifier><identifier>DOI: 10.3390/horticulturae9080885</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Aroma ; Aroma compounds ; ATD-GC–MS ; Benzyl alcohol ; Black tea ; Brand loyalty ; Chemical properties ; Cold traps ; E-nose ; Electronic noses ; Experiments ; Gas chromatography ; Hexanal ; Linalool ; Mass spectrometry ; Mass spectroscopy ; Optimization ; Origins ; response surface ; Response surface methodology ; Scientific imaging ; Software ; Tea ; Temperature</subject><ispartof>Horticulturae, 2023-08, Vol.9 (8), p.885</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-dae0e092bb7f79b1d74ca8a2955f3659c9da765d9debcbc5d1a90005d0a8fbec3</citedby><cites>FETCH-LOGICAL-c430t-dae0e092bb7f79b1d74ca8a2955f3659c9da765d9debcbc5d1a90005d0a8fbec3</cites><orcidid>0000-0002-7652-8632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857072768/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857072768?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Huang, Jianfeng</creatorcontrib><creatorcontrib>Yan, Tingyu</creatorcontrib><creatorcontrib>Yang, Jiangfan</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><title>Aroma Components Analysis and Origin Differentiation of Black Tea Based on ATD-GC-MS and E-Nose</title><title>Horticulturae</title><description>Black tea (Fuyun 6) samples collected from three regions, Youxi, Fu’an, and Datian, were analysed by automatic thermal desorption-gas chromatography–mass spectrometry (ATD-GC–MS) combined with the electronic nose (E-nose) technique to investigate the aroma composition differences between black teas from different regions. The response surface methodology was used to optimize the ATD conditions for extracting the aroma components from the black tea. The results revealed that the optimal conditions for aroma component accumulation from black tea samples included a sample weight of 2.8 g, an adsorption time of 39 min, an adsorption temperature of 75 °C, and a cold trap temperature of −30 °C. The ATD-GC–MS analyses identified a total of 71 aroma components in the black tea samples, of which 31 were utilized to differentiate the origins of the black teas. Additional aroma activity analyses indicated that benzyl alcohol, linalool, hexanal, octanal, and nonanal had odour activity values (OAVs) greater than 10. Additionally, the OAV of decanal exceeded 100, indicating its significant contribution to the aroma profile of Fuyun 6 black tea. The E-nose results demonstrated the ability to differentiate the black tea samples from the three different origins. This study successfully identified the specific aroma substances associated with different tea origins, providing valuable insights into the aroma characteristics of black teas from various regions.</description><subject>Adsorption</subject><subject>Aroma</subject><subject>Aroma compounds</subject><subject>ATD-GC–MS</subject><subject>Benzyl alcohol</subject><subject>Black tea</subject><subject>Brand loyalty</subject><subject>Chemical properties</subject><subject>Cold traps</subject><subject>E-nose</subject><subject>Electronic noses</subject><subject>Experiments</subject><subject>Gas chromatography</subject><subject>Hexanal</subject><subject>Linalool</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Optimization</subject><subject>Origins</subject><subject>response surface</subject><subject>Response surface methodology</subject><subject>Scientific imaging</subject><subject>Software</subject><subject>Tea</subject><subject>Temperature</subject><issn>2311-7524</issn><issn>2311-7524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU9P3DAQxaOqSEXAN-jBUs-hjh3_O4aFUiQohy5na2KPt95m462dPfDta1iEeqh8GOvNvJ_sN03zuaOXnBv69VfKS3SHaTlkQEM11Vp8aE4Z77pWCdZ__Of-qbkoZUspZbSXUrHTxg457YCs0m6fZpyXQoYZpucSC4HZk8ccN3Em1zEEzLUdYYlpJimQqwncb7JGIFdQ0JOqDuvr9nbVPvx8td60P1LB8-YkwFTw4q2eNU_fbtar7-394-3darhvXc_p0npAitSwcVRBmbHzqneggRkhApfCOONBSeGNx9GNTvgOTP2G8BR0GNHxs-buyPUJtnaf4w7ys00Q7auQ8sbCS04T2hEZ-p52BmsKyLWRnff9aLyvZBl8ZX05svY5_TlgWew2HXKNpVimhaKKKanr1OVxagMVGueQlgyuHo-76GqYIVZ9UJL1imshq6E_GlxOpWQM78_sqH1Zpf3fKvlfgSaVFg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Huang, Jianfeng</creator><creator>Yan, Tingyu</creator><creator>Yang, Jiangfan</creator><creator>Xu, Hui</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7652-8632</orcidid></search><sort><creationdate>20230801</creationdate><title>Aroma Components Analysis and Origin Differentiation of Black Tea Based on ATD-GC-MS and E-Nose</title><author>Huang, Jianfeng ; Yan, Tingyu ; Yang, Jiangfan ; Xu, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-dae0e092bb7f79b1d74ca8a2955f3659c9da765d9debcbc5d1a90005d0a8fbec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Aroma</topic><topic>Aroma compounds</topic><topic>ATD-GC–MS</topic><topic>Benzyl alcohol</topic><topic>Black tea</topic><topic>Brand loyalty</topic><topic>Chemical properties</topic><topic>Cold traps</topic><topic>E-nose</topic><topic>Electronic noses</topic><topic>Experiments</topic><topic>Gas chromatography</topic><topic>Hexanal</topic><topic>Linalool</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Optimization</topic><topic>Origins</topic><topic>response surface</topic><topic>Response surface methodology</topic><topic>Scientific imaging</topic><topic>Software</topic><topic>Tea</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jianfeng</creatorcontrib><creatorcontrib>Yan, Tingyu</creatorcontrib><creatorcontrib>Yang, Jiangfan</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Horticulturae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jianfeng</au><au>Yan, Tingyu</au><au>Yang, Jiangfan</au><au>Xu, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aroma Components Analysis and Origin Differentiation of Black Tea Based on ATD-GC-MS and E-Nose</atitle><jtitle>Horticulturae</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>9</volume><issue>8</issue><spage>885</spage><pages>885-</pages><issn>2311-7524</issn><eissn>2311-7524</eissn><abstract>Black tea (Fuyun 6) samples collected from three regions, Youxi, Fu’an, and Datian, were analysed by automatic thermal desorption-gas chromatography–mass spectrometry (ATD-GC–MS) combined with the electronic nose (E-nose) technique to investigate the aroma composition differences between black teas from different regions. The response surface methodology was used to optimize the ATD conditions for extracting the aroma components from the black tea. The results revealed that the optimal conditions for aroma component accumulation from black tea samples included a sample weight of 2.8 g, an adsorption time of 39 min, an adsorption temperature of 75 °C, and a cold trap temperature of −30 °C. The ATD-GC–MS analyses identified a total of 71 aroma components in the black tea samples, of which 31 were utilized to differentiate the origins of the black teas. Additional aroma activity analyses indicated that benzyl alcohol, linalool, hexanal, octanal, and nonanal had odour activity values (OAVs) greater than 10. Additionally, the OAV of decanal exceeded 100, indicating its significant contribution to the aroma profile of Fuyun 6 black tea. The E-nose results demonstrated the ability to differentiate the black tea samples from the three different origins. This study successfully identified the specific aroma substances associated with different tea origins, providing valuable insights into the aroma characteristics of black teas from various regions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/horticulturae9080885</doi><orcidid>https://orcid.org/0000-0002-7652-8632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-7524 |
ispartof | Horticulturae, 2023-08, Vol.9 (8), p.885 |
issn | 2311-7524 2311-7524 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_be2ed4019e204e38961dd4b9ddcbc6fd |
source | Publicly Available Content Database |
subjects | Adsorption Aroma Aroma compounds ATD-GC–MS Benzyl alcohol Black tea Brand loyalty Chemical properties Cold traps E-nose Electronic noses Experiments Gas chromatography Hexanal Linalool Mass spectrometry Mass spectroscopy Optimization Origins response surface Response surface methodology Scientific imaging Software Tea Temperature |
title | Aroma Components Analysis and Origin Differentiation of Black Tea Based on ATD-GC-MS and E-Nose |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aroma%20Components%20Analysis%20and%20Origin%20Differentiation%20of%20Black%20Tea%20Based%20on%20ATD-GC-MS%20and%20E-Nose&rft.jtitle=Horticulturae&rft.au=Huang,%20Jianfeng&rft.date=2023-08-01&rft.volume=9&rft.issue=8&rft.spage=885&rft.pages=885-&rft.issn=2311-7524&rft.eissn=2311-7524&rft_id=info:doi/10.3390/horticulturae9080885&rft_dat=%3Cgale_doaj_%3EA762473856%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-dae0e092bb7f79b1d74ca8a2955f3659c9da765d9debcbc5d1a90005d0a8fbec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857072768&rft_id=info:pmid/&rft_galeid=A762473856&rfr_iscdi=true |