Loading…

tRNA synthetase counteracts c-Myc to develop functional vasculature

Recent studies suggested an essential role for seryl-tRNA synthetase (SerRS) in vascular development. This role is specific to SerRS among all tRNA synthetases and is independent of its well-known aminoacylation function in protein synthesis. A unique nucleus-directing domain, added at the invertebr...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2014-06, Vol.3, p.e02349-e02349
Main Authors: Shi, Yi, Xu, Xiaoling, Zhang, Qian, Fu, Guangsen, Mo, Zhongying, Wang, George S, Kishi, Shuji, Yang, Xiang-Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies suggested an essential role for seryl-tRNA synthetase (SerRS) in vascular development. This role is specific to SerRS among all tRNA synthetases and is independent of its well-known aminoacylation function in protein synthesis. A unique nucleus-directing domain, added at the invertebrate-to-vertebrate transition, confers this novel non-translational activity of SerRS. Previous studies showed that SerRS, in some unknown way, controls VEGFA expression to prevent vascular over-expansion. Using in vitro, cell and animal experiments, we show here that SerRS intervenes by antagonizing c-Myc, the major transcription factor promoting VEGFA expression, through a tandem mechanism. First, by direct head-to-head competition, nuclear-localized SerRS blocks c-Myc from binding to the VEGFA promoter. Second, DNA-bound SerRS recruits the SIRT2 histone deacetylase to erase prior c-Myc-promoted histone acetylation. Thus, vertebrate SerRS and c-Myc is a pair of 'Yin-Yang' transcriptional regulator for proper development of a functional vasculature. Our results also discover an anti-angiogenic activity for SIRT2.DOI: http://dx.doi.org/10.7554/eLife.02349.001.
ISSN:2050-084X
2050-084X
DOI:10.7554/elife.02349