Loading…

Investing in Wind Energy Using Bi-Level Linear Fractional Programming

Investing in wind energy is a tool to reduce greenhouse gas emissions without negatively impacting the environment to accelerate progress towards global net zero. The objective of this study is to present a methodology for efficiently solving the wind energy investment problem, which aims to identif...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-07, Vol.16 (13), p.4952
Main Authors: Alrasheedi, Adel F., Alshamrani, Ahmad M., Alnowibet, Khalid A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Investing in wind energy is a tool to reduce greenhouse gas emissions without negatively impacting the environment to accelerate progress towards global net zero. The objective of this study is to present a methodology for efficiently solving the wind energy investment problem, which aims to identify an optimal wind farm placement and capacity based on fractional programming (FP). This study adopts a bi-level approach whereby a private price-taker investor seeks to maximize its profit at the upper level. Given the optimal placement and capacity of the wind farm, the lower level aims to optimize a fractional objective function defined as the ratio of total generation cost to total wind power output. To solve this problem, the Charnes-Cooper transformation is applied to reformulate the initial bi-level problem with a fractional objective function in the lower-level problem as a bi-level problem with a fractional objective function in the upper-level problem. Afterward, using the primal-dual formulation, a single-level linear FP model is created, which can be solved via a sequence of mixed-integer linear programming (MILP). The presented technique is implemented on the IEEE 118-bus power system, where the results show the model can achieve the best performance in terms of wind power output.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16134952