Loading…

Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor

Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single ty...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2020-01, Vol.30 (2), p.397-408.e4
Main Authors: Saro, Gabriella, Lia, Andrei-Stefan, Thapliyal, Saurabh, Marques, Filipe, Busch, Karl Emanuel, Glauser, Dominique A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553
cites cdi_FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553
container_end_page 408.e4
container_issue 2
container_start_page 397
container_title Cell reports (Cambridge)
container_volume 30
creator Saro, Gabriella
Lia, Andrei-Stefan
Thapliyal, Saurabh
Marques, Filipe
Busch, Karl Emanuel
Glauser, Dominique A.
description Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C–36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium “leak” channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo. [Display omitted] •FLP neurons are nonadapting tonic thermonociceptors in C. elegans•FLPs encode absolute temperature rather than thermal changes•Multiple ion channels orchestrate thermosensory encoding by FLP•FLPs mediate both phasic and tonic behavioral responses Saro et al. ask how sensory information is encoded in a tonic thermonociceptor neuron. The work highlights a distribution of tasks among different ion channels controlling the detection, amplification, stabilization, and termination of signals and reveals the importance of their orchestration to control short- and long-term aversive behaviors.
doi_str_mv 10.1016/j.celrep.2019.12.029
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_be8896c0c2f54bd5aa241effe8138b72</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124719316791</els_id><doaj_id>oai_doaj_org_article_be8896c0c2f54bd5aa241effe8138b72</doaj_id><sourcerecordid>2339792776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553</originalsourceid><addsrcrecordid>eNp9UcFu3CAQtapWTZTmD6qKYw9Zl8EYzKVStUrTVSP1kO0ZAR4aVl7YgjfS_n1JnEY9lcvA6M17vHlN8x5oCxTEp13rcMp4aBkF1QJrKVOvmnPGAFbAuHz9z_2suSxlR-sRFEDxt81ZVwvlAz9vzN0BXfDBkU2KZH1vYsSpkHWKc04TucNYUj6RGxPi1dMrzOEhzKcrYuJIvoeIc3CFhEgM2aZYebb3mPcpJhccHuaU3zVvvJkKXj7Xi-bn1-vt-tvq9sfNZv3lduV6TucVjp3lg5LS9cIJ5dBWS0wYaSxYNTDrOROCe2ZlLwG4GnszeG48eBCy77uLZrPwjsns9CGHvcknnUzQT42Uf2mT62cn1BaHQQlHHfM9t5XIMA7oPQ7QDVayyvVx4Trk9PuIZdb7UOrGJxMxHYtmXaekYlKKCuUL1OVUSkb_Ig1UP2ald3rJSj9mpYHpaqyOfXhWONo9ji9Df5OpgM8LoMaBDwGzLi5gdDiGjG6upsL_Ff4AT9emRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339792776</pqid></control><display><type>article</type><title>Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Saro, Gabriella ; Lia, Andrei-Stefan ; Thapliyal, Saurabh ; Marques, Filipe ; Busch, Karl Emanuel ; Glauser, Dominique A.</creator><creatorcontrib>Saro, Gabriella ; Lia, Andrei-Stefan ; Thapliyal, Saurabh ; Marques, Filipe ; Busch, Karl Emanuel ; Glauser, Dominique A.</creatorcontrib><description>Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C–36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium “leak” channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo. [Display omitted] •FLP neurons are nonadapting tonic thermonociceptors in C. elegans•FLPs encode absolute temperature rather than thermal changes•Multiple ion channels orchestrate thermosensory encoding by FLP•FLPs mediate both phasic and tonic behavioral responses Saro et al. ask how sensory information is encoded in a tonic thermonociceptor neuron. The work highlights a distribution of tasks among different ion channels controlling the detection, amplification, stabilization, and termination of signals and reveals the importance of their orchestration to control short- and long-term aversive behaviors.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2019.12.029</identifier><identifier>PMID: 31940484</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Genetically Modified ; Caenorhabditis elegans ; cold sensation ; heat sensation ; Ion Channels - metabolism ; NALCN ; Nociceptors - metabolism ; optogenetics ; Optogenetics - methods ; RyR ; Temperature ; thermosensation ; Thermosensing - physiology ; TRP ; VGCC</subject><ispartof>Cell reports (Cambridge), 2020-01, Vol.30 (2), p.397-408.e4</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553</citedby><cites>FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31940484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saro, Gabriella</creatorcontrib><creatorcontrib>Lia, Andrei-Stefan</creatorcontrib><creatorcontrib>Thapliyal, Saurabh</creatorcontrib><creatorcontrib>Marques, Filipe</creatorcontrib><creatorcontrib>Busch, Karl Emanuel</creatorcontrib><creatorcontrib>Glauser, Dominique A.</creatorcontrib><title>Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C–36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium “leak” channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo. [Display omitted] •FLP neurons are nonadapting tonic thermonociceptors in C. elegans•FLPs encode absolute temperature rather than thermal changes•Multiple ion channels orchestrate thermosensory encoding by FLP•FLPs mediate both phasic and tonic behavioral responses Saro et al. ask how sensory information is encoded in a tonic thermonociceptor neuron. The work highlights a distribution of tasks among different ion channels controlling the detection, amplification, stabilization, and termination of signals and reveals the importance of their orchestration to control short- and long-term aversive behaviors.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Caenorhabditis elegans</subject><subject>cold sensation</subject><subject>heat sensation</subject><subject>Ion Channels - metabolism</subject><subject>NALCN</subject><subject>Nociceptors - metabolism</subject><subject>optogenetics</subject><subject>Optogenetics - methods</subject><subject>RyR</subject><subject>Temperature</subject><subject>thermosensation</subject><subject>Thermosensing - physiology</subject><subject>TRP</subject><subject>VGCC</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UcFu3CAQtapWTZTmD6qKYw9Zl8EYzKVStUrTVSP1kO0ZAR4aVl7YgjfS_n1JnEY9lcvA6M17vHlN8x5oCxTEp13rcMp4aBkF1QJrKVOvmnPGAFbAuHz9z_2suSxlR-sRFEDxt81ZVwvlAz9vzN0BXfDBkU2KZH1vYsSpkHWKc04TucNYUj6RGxPi1dMrzOEhzKcrYuJIvoeIc3CFhEgM2aZYebb3mPcpJhccHuaU3zVvvJkKXj7Xi-bn1-vt-tvq9sfNZv3lduV6TucVjp3lg5LS9cIJ5dBWS0wYaSxYNTDrOROCe2ZlLwG4GnszeG48eBCy77uLZrPwjsns9CGHvcknnUzQT42Uf2mT62cn1BaHQQlHHfM9t5XIMA7oPQ7QDVayyvVx4Trk9PuIZdb7UOrGJxMxHYtmXaekYlKKCuUL1OVUSkb_Ig1UP2ald3rJSj9mpYHpaqyOfXhWONo9ji9Df5OpgM8LoMaBDwGzLi5gdDiGjG6upsL_Ff4AT9emRQ</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Saro, Gabriella</creator><creator>Lia, Andrei-Stefan</creator><creator>Thapliyal, Saurabh</creator><creator>Marques, Filipe</creator><creator>Busch, Karl Emanuel</creator><creator>Glauser, Dominique A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20200114</creationdate><title>Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor</title><author>Saro, Gabriella ; Lia, Andrei-Stefan ; Thapliyal, Saurabh ; Marques, Filipe ; Busch, Karl Emanuel ; Glauser, Dominique A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Caenorhabditis elegans</topic><topic>cold sensation</topic><topic>heat sensation</topic><topic>Ion Channels - metabolism</topic><topic>NALCN</topic><topic>Nociceptors - metabolism</topic><topic>optogenetics</topic><topic>Optogenetics - methods</topic><topic>RyR</topic><topic>Temperature</topic><topic>thermosensation</topic><topic>Thermosensing - physiology</topic><topic>TRP</topic><topic>VGCC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saro, Gabriella</creatorcontrib><creatorcontrib>Lia, Andrei-Stefan</creatorcontrib><creatorcontrib>Thapliyal, Saurabh</creatorcontrib><creatorcontrib>Marques, Filipe</creatorcontrib><creatorcontrib>Busch, Karl Emanuel</creatorcontrib><creatorcontrib>Glauser, Dominique A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saro, Gabriella</au><au>Lia, Andrei-Stefan</au><au>Thapliyal, Saurabh</au><au>Marques, Filipe</au><au>Busch, Karl Emanuel</au><au>Glauser, Dominique A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2020-01-14</date><risdate>2020</risdate><volume>30</volume><issue>2</issue><spage>397</spage><epage>408.e4</epage><pages>397-408.e4</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C–36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium “leak” channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo. [Display omitted] •FLP neurons are nonadapting tonic thermonociceptors in C. elegans•FLPs encode absolute temperature rather than thermal changes•Multiple ion channels orchestrate thermosensory encoding by FLP•FLPs mediate both phasic and tonic behavioral responses Saro et al. ask how sensory information is encoded in a tonic thermonociceptor neuron. The work highlights a distribution of tasks among different ion channels controlling the detection, amplification, stabilization, and termination of signals and reveals the importance of their orchestration to control short- and long-term aversive behaviors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31940484</pmid><doi>10.1016/j.celrep.2019.12.029</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2020-01, Vol.30 (2), p.397-408.e4
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_be8896c0c2f54bd5aa241effe8138b72
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Animals, Genetically Modified
Caenorhabditis elegans
cold sensation
heat sensation
Ion Channels - metabolism
NALCN
Nociceptors - metabolism
optogenetics
Optogenetics - methods
RyR
Temperature
thermosensation
Thermosensing - physiology
TRP
VGCC
title Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specific%20Ion%20Channels%20Control%20Sensory%20Gain,%20Sensitivity,%20and%20Kinetics%20in%20a%20Tonic%20Thermonociceptor&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Saro,%20Gabriella&rft.date=2020-01-14&rft.volume=30&rft.issue=2&rft.spage=397&rft.epage=408.e4&rft.pages=397-408.e4&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2019.12.029&rft_dat=%3Cproquest_doaj_%3E2339792776%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2339792776&rft_id=info:pmid/31940484&rfr_iscdi=true