Loading…
Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor
Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single ty...
Saved in:
Published in: | Cell reports (Cambridge) 2020-01, Vol.30 (2), p.397-408.e4 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553 |
container_end_page | 408.e4 |
container_issue | 2 |
container_start_page | 397 |
container_title | Cell reports (Cambridge) |
container_volume | 30 |
creator | Saro, Gabriella Lia, Andrei-Stefan Thapliyal, Saurabh Marques, Filipe Busch, Karl Emanuel Glauser, Dominique A. |
description | Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C–36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium “leak” channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo.
[Display omitted]
•FLP neurons are nonadapting tonic thermonociceptors in C. elegans•FLPs encode absolute temperature rather than thermal changes•Multiple ion channels orchestrate thermosensory encoding by FLP•FLPs mediate both phasic and tonic behavioral responses
Saro et al. ask how sensory information is encoded in a tonic thermonociceptor neuron. The work highlights a distribution of tasks among different ion channels controlling the detection, amplification, stabilization, and termination of signals and reveals the importance of their orchestration to control short- and long-term aversive behaviors. |
doi_str_mv | 10.1016/j.celrep.2019.12.029 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_be8896c0c2f54bd5aa241effe8138b72</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124719316791</els_id><doaj_id>oai_doaj_org_article_be8896c0c2f54bd5aa241effe8138b72</doaj_id><sourcerecordid>2339792776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553</originalsourceid><addsrcrecordid>eNp9UcFu3CAQtapWTZTmD6qKYw9Zl8EYzKVStUrTVSP1kO0ZAR4aVl7YgjfS_n1JnEY9lcvA6M17vHlN8x5oCxTEp13rcMp4aBkF1QJrKVOvmnPGAFbAuHz9z_2suSxlR-sRFEDxt81ZVwvlAz9vzN0BXfDBkU2KZH1vYsSpkHWKc04TucNYUj6RGxPi1dMrzOEhzKcrYuJIvoeIc3CFhEgM2aZYebb3mPcpJhccHuaU3zVvvJkKXj7Xi-bn1-vt-tvq9sfNZv3lduV6TucVjp3lg5LS9cIJ5dBWS0wYaSxYNTDrOROCe2ZlLwG4GnszeG48eBCy77uLZrPwjsns9CGHvcknnUzQT42Uf2mT62cn1BaHQQlHHfM9t5XIMA7oPQ7QDVayyvVx4Trk9PuIZdb7UOrGJxMxHYtmXaekYlKKCuUL1OVUSkb_Ig1UP2ald3rJSj9mpYHpaqyOfXhWONo9ji9Df5OpgM8LoMaBDwGzLi5gdDiGjG6upsL_Ff4AT9emRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339792776</pqid></control><display><type>article</type><title>Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Saro, Gabriella ; Lia, Andrei-Stefan ; Thapliyal, Saurabh ; Marques, Filipe ; Busch, Karl Emanuel ; Glauser, Dominique A.</creator><creatorcontrib>Saro, Gabriella ; Lia, Andrei-Stefan ; Thapliyal, Saurabh ; Marques, Filipe ; Busch, Karl Emanuel ; Glauser, Dominique A.</creatorcontrib><description>Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C–36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium “leak” channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo.
[Display omitted]
•FLP neurons are nonadapting tonic thermonociceptors in C. elegans•FLPs encode absolute temperature rather than thermal changes•Multiple ion channels orchestrate thermosensory encoding by FLP•FLPs mediate both phasic and tonic behavioral responses
Saro et al. ask how sensory information is encoded in a tonic thermonociceptor neuron. The work highlights a distribution of tasks among different ion channels controlling the detection, amplification, stabilization, and termination of signals and reveals the importance of their orchestration to control short- and long-term aversive behaviors.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2019.12.029</identifier><identifier>PMID: 31940484</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Genetically Modified ; Caenorhabditis elegans ; cold sensation ; heat sensation ; Ion Channels - metabolism ; NALCN ; Nociceptors - metabolism ; optogenetics ; Optogenetics - methods ; RyR ; Temperature ; thermosensation ; Thermosensing - physiology ; TRP ; VGCC</subject><ispartof>Cell reports (Cambridge), 2020-01, Vol.30 (2), p.397-408.e4</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553</citedby><cites>FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31940484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saro, Gabriella</creatorcontrib><creatorcontrib>Lia, Andrei-Stefan</creatorcontrib><creatorcontrib>Thapliyal, Saurabh</creatorcontrib><creatorcontrib>Marques, Filipe</creatorcontrib><creatorcontrib>Busch, Karl Emanuel</creatorcontrib><creatorcontrib>Glauser, Dominique A.</creatorcontrib><title>Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C–36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium “leak” channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo.
[Display omitted]
•FLP neurons are nonadapting tonic thermonociceptors in C. elegans•FLPs encode absolute temperature rather than thermal changes•Multiple ion channels orchestrate thermosensory encoding by FLP•FLPs mediate both phasic and tonic behavioral responses
Saro et al. ask how sensory information is encoded in a tonic thermonociceptor neuron. The work highlights a distribution of tasks among different ion channels controlling the detection, amplification, stabilization, and termination of signals and reveals the importance of their orchestration to control short- and long-term aversive behaviors.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Caenorhabditis elegans</subject><subject>cold sensation</subject><subject>heat sensation</subject><subject>Ion Channels - metabolism</subject><subject>NALCN</subject><subject>Nociceptors - metabolism</subject><subject>optogenetics</subject><subject>Optogenetics - methods</subject><subject>RyR</subject><subject>Temperature</subject><subject>thermosensation</subject><subject>Thermosensing - physiology</subject><subject>TRP</subject><subject>VGCC</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UcFu3CAQtapWTZTmD6qKYw9Zl8EYzKVStUrTVSP1kO0ZAR4aVl7YgjfS_n1JnEY9lcvA6M17vHlN8x5oCxTEp13rcMp4aBkF1QJrKVOvmnPGAFbAuHz9z_2suSxlR-sRFEDxt81ZVwvlAz9vzN0BXfDBkU2KZH1vYsSpkHWKc04TucNYUj6RGxPi1dMrzOEhzKcrYuJIvoeIc3CFhEgM2aZYebb3mPcpJhccHuaU3zVvvJkKXj7Xi-bn1-vt-tvq9sfNZv3lduV6TucVjp3lg5LS9cIJ5dBWS0wYaSxYNTDrOROCe2ZlLwG4GnszeG48eBCy77uLZrPwjsns9CGHvcknnUzQT42Uf2mT62cn1BaHQQlHHfM9t5XIMA7oPQ7QDVayyvVx4Trk9PuIZdb7UOrGJxMxHYtmXaekYlKKCuUL1OVUSkb_Ig1UP2ald3rJSj9mpYHpaqyOfXhWONo9ji9Df5OpgM8LoMaBDwGzLi5gdDiGjG6upsL_Ff4AT9emRQ</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Saro, Gabriella</creator><creator>Lia, Andrei-Stefan</creator><creator>Thapliyal, Saurabh</creator><creator>Marques, Filipe</creator><creator>Busch, Karl Emanuel</creator><creator>Glauser, Dominique A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20200114</creationdate><title>Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor</title><author>Saro, Gabriella ; Lia, Andrei-Stefan ; Thapliyal, Saurabh ; Marques, Filipe ; Busch, Karl Emanuel ; Glauser, Dominique A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Caenorhabditis elegans</topic><topic>cold sensation</topic><topic>heat sensation</topic><topic>Ion Channels - metabolism</topic><topic>NALCN</topic><topic>Nociceptors - metabolism</topic><topic>optogenetics</topic><topic>Optogenetics - methods</topic><topic>RyR</topic><topic>Temperature</topic><topic>thermosensation</topic><topic>Thermosensing - physiology</topic><topic>TRP</topic><topic>VGCC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saro, Gabriella</creatorcontrib><creatorcontrib>Lia, Andrei-Stefan</creatorcontrib><creatorcontrib>Thapliyal, Saurabh</creatorcontrib><creatorcontrib>Marques, Filipe</creatorcontrib><creatorcontrib>Busch, Karl Emanuel</creatorcontrib><creatorcontrib>Glauser, Dominique A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saro, Gabriella</au><au>Lia, Andrei-Stefan</au><au>Thapliyal, Saurabh</au><au>Marques, Filipe</au><au>Busch, Karl Emanuel</au><au>Glauser, Dominique A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2020-01-14</date><risdate>2020</risdate><volume>30</volume><issue>2</issue><spage>397</spage><epage>408.e4</epage><pages>397-408.e4</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C–36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium “leak” channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo.
[Display omitted]
•FLP neurons are nonadapting tonic thermonociceptors in C. elegans•FLPs encode absolute temperature rather than thermal changes•Multiple ion channels orchestrate thermosensory encoding by FLP•FLPs mediate both phasic and tonic behavioral responses
Saro et al. ask how sensory information is encoded in a tonic thermonociceptor neuron. The work highlights a distribution of tasks among different ion channels controlling the detection, amplification, stabilization, and termination of signals and reveals the importance of their orchestration to control short- and long-term aversive behaviors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31940484</pmid><doi>10.1016/j.celrep.2019.12.029</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2020-01, Vol.30 (2), p.397-408.e4 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_be8896c0c2f54bd5aa241effe8138b72 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Animals Animals, Genetically Modified Caenorhabditis elegans cold sensation heat sensation Ion Channels - metabolism NALCN Nociceptors - metabolism optogenetics Optogenetics - methods RyR Temperature thermosensation Thermosensing - physiology TRP VGCC |
title | Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specific%20Ion%20Channels%20Control%20Sensory%20Gain,%20Sensitivity,%20and%20Kinetics%20in%20a%20Tonic%20Thermonociceptor&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Saro,%20Gabriella&rft.date=2020-01-14&rft.volume=30&rft.issue=2&rft.spage=397&rft.epage=408.e4&rft.pages=397-408.e4&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2019.12.029&rft_dat=%3Cproquest_doaj_%3E2339792776%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-ed3b48977c56c69ceb02926a7ab1b982bf42664f2b7571149d5a8f4af1f167553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2339792776&rft_id=info:pmid/31940484&rfr_iscdi=true |