Loading…

Image Retrieval Using Low Level and Local Features Contents: A Comprehensive Review

Billions of multimedia data files are getting created and shared on the web, mainly social media websites. The explosive increase in multimedia data, especially images and videos, has created an issue of searching and retrieving the relevant data from the archive collection. In the last few decades,...

Full description

Saved in:
Bibliographic Details
Published in:Applied computational intelligence and soft computing 2020, Vol.2020 (2020), p.1-20
Main Authors: Dewan, Jaya H., Thepade, Sudeep D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Billions of multimedia data files are getting created and shared on the web, mainly social media websites. The explosive increase in multimedia data, especially images and videos, has created an issue of searching and retrieving the relevant data from the archive collection. In the last few decades, the complexity of the image data has increased exponentially. Text-based image retrieval techniques do not meet the needs of the users due to the difference between image contents and text annotations associated with an image. Various methods have been proposed in recent years to tackle the problem of the semantic gap and retrieve images similar to the query specified by the user. Image retrieval based on image contents has attracted many researchers as it uses the visual content of the image such as color, texture, and shape feature. The low-level image features represent the image contents as feature vectors. The query image feature vector is compared with the dataset images feature vectors to retrieve similar images. The main aim of this article is to appraise the various image retrieval methods based on feature extraction, description, and matching content that has been presented in the last 10–15 years based on low-level feature contents and local features and proposes a promising future research direction for researchers.
ISSN:1687-9724
1687-9732
DOI:10.1155/2020/8851931