Loading…
Long Short-Term Memory Recurrent Network Architectures for Electromagnetic Field Reconstruction Based on Underground Observations
Deep underground laboratories offer advantages for conducting high-precision observations of weak geophysical signals, benefiting from a low background noise level. Enhancing strong, noisy ground electromagnetic (EM) field data using synchronously recorded underground EM signals, which typically exh...
Saved in:
Published in: | Atmosphere 2024-06, Vol.15 (6), p.734 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep underground laboratories offer advantages for conducting high-precision observations of weak geophysical signals, benefiting from a low background noise level. Enhancing strong, noisy ground electromagnetic (EM) field data using synchronously recorded underground EM signals, which typically exhibit a high signal-to-noise ratio, is both valuable and feasible. In this study, we propose an EM field reconstruction method employing a Long Short-Term Memory (LSTM) recurrent neural network with referenced deep underground EM observations. Initially, a deep learning model was developed to capture the time-varying features of underground multi-component EM fields using the LSTM recurrent neural network. Subsequently, this model was applied to process synchronously observed strong, noisy data from other conventional observation systems, such as those at the surface, to achieve noise suppression through signal reconstructions. Both the theoretical analysis and the practical observational data suggest that the proposed method effectively suppresses noise and reconstructs clean EM signals. This method is efficient and time-saving, representing an effective approach to fully utilizing the advantages of deep underground observation data. Furthermore, this method could be extended to the processing and analysis of other geophysical data. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos15060734 |