Loading…

A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method

Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-5
Main Authors: Zhou, Yan, Wang, Yanxia, Li, Yaojiang, Yan, Xingyu, Cao, Hui, Yang, Sanchun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43
cites cdi_FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43
container_end_page 5
container_issue 2014
container_start_page 1
container_title TheScientificWorld
container_volume 2014
creator Zhou, Yan
Wang, Yanxia
Li, Yaojiang
Yan, Xingyu
Cao, Hui
Yang, Sanchun
description Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.
doi_str_mv 10.1155/2014/418674
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_be9bee0043f5418db17e723ed1398e3c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413711593</galeid><doaj_id>oai_doaj_org_article_be9bee0043f5418db17e723ed1398e3c</doaj_id><sourcerecordid>A413711593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43</originalsourceid><addsrcrecordid>eNqNks1v0zAYxiMEYt3gxB1F4oJA3ezYju3LpFKxMamMSYDEzXLs162rNO7shIn_Hrcp08Zp8sFfv_fR68dPUbzB6BRjxs4qhOkZxaLm9FkxwYzwKaf01_NiUhFWT2tM0VFxnNIaISI4Zi-Lo4pyXqEKTYp-Vs7DZhs66PryJoL1pvehK79Cvwq2dCGWF-0A5aVOZXDlte6HqNv9Ntc1Q9rTn3QCW-bFdeha34GO5Y2Ovc_kAnTqy--3g46QDrKvihdOtwleH-aT4ufF5x_zL9PFt8ur-WwxNTVi_RQ3mkhDoXZ1QyW3hNfOMCyA1w1BmFnAhEhthKVCVMxJsKiuhCC0sQ43lJwUV6OuDXqtttFvdPyjgvZqfxDiUu26NC2oBmQDgBAljmUvbYM58IqAxUQKICZrnY9a26HZgDXZr2zEI9HHN51fqWX4rYjknDKUBd4fBGK4HSD1auOTgbbVHYQhqfxxVGDMBXsCiqWgAtU8o-_-Q9dhiF12dUcxJhDGMlOnI7XU-a2-cyG3aPKwsPEmf77z-XxGMeE5UpLkgo9jgYkhpQju_qEYqV3q1C51akxdpt8-9Oae_RezDHwYgZXvrL7zT1ODjIDTD2AqGWPkL5mv51c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1515580119</pqid></control><display><type>article</type><title>A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Zhou, Yan ; Wang, Yanxia ; Li, Yaojiang ; Yan, Xingyu ; Cao, Hui ; Yang, Sanchun</creator><contributor>Shiea, J. ; Lee, S.</contributor><creatorcontrib>Zhou, Yan ; Wang, Yanxia ; Li, Yaojiang ; Yan, Xingyu ; Cao, Hui ; Yang, Sanchun ; Shiea, J. ; Lee, S.</creatorcontrib><description>Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/418674</identifier><identifier>PMID: 24772020</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Carbon dioxide ; Carbon monoxide ; Chemical properties ; Combustion ; Emissions control ; Energy conservation ; Flue gas ; Flue gases ; Identification and classification ; Least squares ; Least squares method ; Least-Squares Analysis ; Models, Chemical ; Natural gas ; Natural Gas - analysis ; Neural networks ; Power plants ; Prediction models ; Spectrum analysis</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-5</ispartof><rights>Copyright © 2014 Hui Cao et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Hui Cao et al. Hui Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Hui Cao et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43</citedby><cites>FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1515580119/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1515580119?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24772020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shiea, J.</contributor><contributor>Lee, S.</contributor><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Wang, Yanxia</creatorcontrib><creatorcontrib>Li, Yaojiang</creatorcontrib><creatorcontrib>Yan, Xingyu</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Yang, Sanchun</creatorcontrib><title>A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.</description><subject>Algorithms</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Chemical properties</subject><subject>Combustion</subject><subject>Emissions control</subject><subject>Energy conservation</subject><subject>Flue gas</subject><subject>Flue gases</subject><subject>Identification and classification</subject><subject>Least squares</subject><subject>Least squares method</subject><subject>Least-Squares Analysis</subject><subject>Models, Chemical</subject><subject>Natural gas</subject><subject>Natural Gas - analysis</subject><subject>Neural networks</subject><subject>Power plants</subject><subject>Prediction models</subject><subject>Spectrum analysis</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1v0zAYxiMEYt3gxB1F4oJA3ezYju3LpFKxMamMSYDEzXLs162rNO7shIn_Hrcp08Zp8sFfv_fR68dPUbzB6BRjxs4qhOkZxaLm9FkxwYzwKaf01_NiUhFWT2tM0VFxnNIaISI4Zi-Lo4pyXqEKTYp-Vs7DZhs66PryJoL1pvehK79Cvwq2dCGWF-0A5aVOZXDlte6HqNv9Ntc1Q9rTn3QCW-bFdeha34GO5Y2Ovc_kAnTqy--3g46QDrKvihdOtwleH-aT4ufF5x_zL9PFt8ur-WwxNTVi_RQ3mkhDoXZ1QyW3hNfOMCyA1w1BmFnAhEhthKVCVMxJsKiuhCC0sQ43lJwUV6OuDXqtttFvdPyjgvZqfxDiUu26NC2oBmQDgBAljmUvbYM58IqAxUQKICZrnY9a26HZgDXZr2zEI9HHN51fqWX4rYjknDKUBd4fBGK4HSD1auOTgbbVHYQhqfxxVGDMBXsCiqWgAtU8o-_-Q9dhiF12dUcxJhDGMlOnI7XU-a2-cyG3aPKwsPEmf77z-XxGMeE5UpLkgo9jgYkhpQju_qEYqV3q1C51akxdpt8-9Oae_RezDHwYgZXvrL7zT1ODjIDTD2AqGWPkL5mv51c</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Zhou, Yan</creator><creator>Wang, Yanxia</creator><creator>Li, Yaojiang</creator><creator>Yan, Xingyu</creator><creator>Cao, Hui</creator><creator>Yang, Sanchun</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method</title><author>Zhou, Yan ; Wang, Yanxia ; Li, Yaojiang ; Yan, Xingyu ; Cao, Hui ; Yang, Sanchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Chemical properties</topic><topic>Combustion</topic><topic>Emissions control</topic><topic>Energy conservation</topic><topic>Flue gas</topic><topic>Flue gases</topic><topic>Identification and classification</topic><topic>Least squares</topic><topic>Least squares method</topic><topic>Least-Squares Analysis</topic><topic>Models, Chemical</topic><topic>Natural gas</topic><topic>Natural Gas - analysis</topic><topic>Neural networks</topic><topic>Power plants</topic><topic>Prediction models</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Wang, Yanxia</creatorcontrib><creatorcontrib>Li, Yaojiang</creatorcontrib><creatorcontrib>Yan, Xingyu</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Yang, Sanchun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yan</au><au>Wang, Yanxia</au><au>Li, Yaojiang</au><au>Yan, Xingyu</au><au>Cao, Hui</au><au>Yang, Sanchun</au><au>Shiea, J.</au><au>Lee, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24772020</pmid><doi>10.1155/2014/418674</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2356-6140
ispartof TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-5
issn 2356-6140
1537-744X
1537-744X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_be9bee0043f5418db17e723ed1398e3c
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Open Access: Wiley-Blackwell Open Access Journals
subjects Algorithms
Carbon dioxide
Carbon monoxide
Chemical properties
Combustion
Emissions control
Energy conservation
Flue gas
Flue gases
Identification and classification
Least squares
Least squares method
Least-Squares Analysis
Models, Chemical
Natural gas
Natural Gas - analysis
Neural networks
Power plants
Prediction models
Spectrum analysis
title A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Component%20Prediction%20Method%20for%20Flue%20Gas%20of%20Natural%20Gas%20Combustion%20Based%20on%20Nonlinear%20Partial%20Least%20Squares%20Method&rft.jtitle=TheScientificWorld&rft.au=Zhou,%20Yan&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/418674&rft_dat=%3Cgale_doaj_%3EA413711593%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1515580119&rft_id=info:pmid/24772020&rft_galeid=A413711593&rfr_iscdi=true