Loading…
A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method
Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended...
Saved in:
Published in: | TheScientificWorld 2014-01, Vol.2014 (2014), p.1-5 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43 |
container_end_page | 5 |
container_issue | 2014 |
container_start_page | 1 |
container_title | TheScientificWorld |
container_volume | 2014 |
creator | Zhou, Yan Wang, Yanxia Li, Yaojiang Yan, Xingyu Cao, Hui Yang, Sanchun |
description | Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness. |
doi_str_mv | 10.1155/2014/418674 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_be9bee0043f5418db17e723ed1398e3c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413711593</galeid><doaj_id>oai_doaj_org_article_be9bee0043f5418db17e723ed1398e3c</doaj_id><sourcerecordid>A413711593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43</originalsourceid><addsrcrecordid>eNqNks1v0zAYxiMEYt3gxB1F4oJA3ezYju3LpFKxMamMSYDEzXLs162rNO7shIn_Hrcp08Zp8sFfv_fR68dPUbzB6BRjxs4qhOkZxaLm9FkxwYzwKaf01_NiUhFWT2tM0VFxnNIaISI4Zi-Lo4pyXqEKTYp-Vs7DZhs66PryJoL1pvehK79Cvwq2dCGWF-0A5aVOZXDlte6HqNv9Ntc1Q9rTn3QCW-bFdeha34GO5Y2Ovc_kAnTqy--3g46QDrKvihdOtwleH-aT4ufF5x_zL9PFt8ur-WwxNTVi_RQ3mkhDoXZ1QyW3hNfOMCyA1w1BmFnAhEhthKVCVMxJsKiuhCC0sQ43lJwUV6OuDXqtttFvdPyjgvZqfxDiUu26NC2oBmQDgBAljmUvbYM58IqAxUQKICZrnY9a26HZgDXZr2zEI9HHN51fqWX4rYjknDKUBd4fBGK4HSD1auOTgbbVHYQhqfxxVGDMBXsCiqWgAtU8o-_-Q9dhiF12dUcxJhDGMlOnI7XU-a2-cyG3aPKwsPEmf77z-XxGMeE5UpLkgo9jgYkhpQju_qEYqV3q1C51akxdpt8-9Oae_RezDHwYgZXvrL7zT1ODjIDTD2AqGWPkL5mv51c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1515580119</pqid></control><display><type>article</type><title>A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Zhou, Yan ; Wang, Yanxia ; Li, Yaojiang ; Yan, Xingyu ; Cao, Hui ; Yang, Sanchun</creator><contributor>Shiea, J. ; Lee, S.</contributor><creatorcontrib>Zhou, Yan ; Wang, Yanxia ; Li, Yaojiang ; Yan, Xingyu ; Cao, Hui ; Yang, Sanchun ; Shiea, J. ; Lee, S.</creatorcontrib><description>Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/418674</identifier><identifier>PMID: 24772020</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Carbon dioxide ; Carbon monoxide ; Chemical properties ; Combustion ; Emissions control ; Energy conservation ; Flue gas ; Flue gases ; Identification and classification ; Least squares ; Least squares method ; Least-Squares Analysis ; Models, Chemical ; Natural gas ; Natural Gas - analysis ; Neural networks ; Power plants ; Prediction models ; Spectrum analysis</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-5</ispartof><rights>Copyright © 2014 Hui Cao et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Hui Cao et al. Hui Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Hui Cao et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43</citedby><cites>FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1515580119/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1515580119?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24772020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shiea, J.</contributor><contributor>Lee, S.</contributor><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Wang, Yanxia</creatorcontrib><creatorcontrib>Li, Yaojiang</creatorcontrib><creatorcontrib>Yan, Xingyu</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Yang, Sanchun</creatorcontrib><title>A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.</description><subject>Algorithms</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Chemical properties</subject><subject>Combustion</subject><subject>Emissions control</subject><subject>Energy conservation</subject><subject>Flue gas</subject><subject>Flue gases</subject><subject>Identification and classification</subject><subject>Least squares</subject><subject>Least squares method</subject><subject>Least-Squares Analysis</subject><subject>Models, Chemical</subject><subject>Natural gas</subject><subject>Natural Gas - analysis</subject><subject>Neural networks</subject><subject>Power plants</subject><subject>Prediction models</subject><subject>Spectrum analysis</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1v0zAYxiMEYt3gxB1F4oJA3ezYju3LpFKxMamMSYDEzXLs162rNO7shIn_Hrcp08Zp8sFfv_fR68dPUbzB6BRjxs4qhOkZxaLm9FkxwYzwKaf01_NiUhFWT2tM0VFxnNIaISI4Zi-Lo4pyXqEKTYp-Vs7DZhs66PryJoL1pvehK79Cvwq2dCGWF-0A5aVOZXDlte6HqNv9Ntc1Q9rTn3QCW-bFdeha34GO5Y2Ovc_kAnTqy--3g46QDrKvihdOtwleH-aT4ufF5x_zL9PFt8ur-WwxNTVi_RQ3mkhDoXZ1QyW3hNfOMCyA1w1BmFnAhEhthKVCVMxJsKiuhCC0sQ43lJwUV6OuDXqtttFvdPyjgvZqfxDiUu26NC2oBmQDgBAljmUvbYM58IqAxUQKICZrnY9a26HZgDXZr2zEI9HHN51fqWX4rYjknDKUBd4fBGK4HSD1auOTgbbVHYQhqfxxVGDMBXsCiqWgAtU8o-_-Q9dhiF12dUcxJhDGMlOnI7XU-a2-cyG3aPKwsPEmf77z-XxGMeE5UpLkgo9jgYkhpQju_qEYqV3q1C51akxdpt8-9Oae_RezDHwYgZXvrL7zT1ODjIDTD2AqGWPkL5mv51c</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Zhou, Yan</creator><creator>Wang, Yanxia</creator><creator>Li, Yaojiang</creator><creator>Yan, Xingyu</creator><creator>Cao, Hui</creator><creator>Yang, Sanchun</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method</title><author>Zhou, Yan ; Wang, Yanxia ; Li, Yaojiang ; Yan, Xingyu ; Cao, Hui ; Yang, Sanchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Chemical properties</topic><topic>Combustion</topic><topic>Emissions control</topic><topic>Energy conservation</topic><topic>Flue gas</topic><topic>Flue gases</topic><topic>Identification and classification</topic><topic>Least squares</topic><topic>Least squares method</topic><topic>Least-Squares Analysis</topic><topic>Models, Chemical</topic><topic>Natural gas</topic><topic>Natural Gas - analysis</topic><topic>Neural networks</topic><topic>Power plants</topic><topic>Prediction models</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Wang, Yanxia</creatorcontrib><creatorcontrib>Li, Yaojiang</creatorcontrib><creatorcontrib>Yan, Xingyu</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Yang, Sanchun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yan</au><au>Wang, Yanxia</au><au>Li, Yaojiang</au><au>Yan, Xingyu</au><au>Cao, Hui</au><au>Yang, Sanchun</au><au>Shiea, J.</au><au>Lee, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24772020</pmid><doi>10.1155/2014/418674</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2356-6140 |
ispartof | TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-5 |
issn | 2356-6140 1537-744X 1537-744X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_be9bee0043f5418db17e723ed1398e3c |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Open Access: Wiley-Blackwell Open Access Journals |
subjects | Algorithms Carbon dioxide Carbon monoxide Chemical properties Combustion Emissions control Energy conservation Flue gas Flue gases Identification and classification Least squares Least squares method Least-Squares Analysis Models, Chemical Natural gas Natural Gas - analysis Neural networks Power plants Prediction models Spectrum analysis |
title | A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Component%20Prediction%20Method%20for%20Flue%20Gas%20of%20Natural%20Gas%20Combustion%20Based%20on%20Nonlinear%20Partial%20Least%20Squares%20Method&rft.jtitle=TheScientificWorld&rft.au=Zhou,%20Yan&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/418674&rft_dat=%3Cgale_doaj_%3EA413711593%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c605t-1ba39c4e6f6b497d376fc518e76b3015de1339ac8d48825f9ed0628834bdf1b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1515580119&rft_id=info:pmid/24772020&rft_galeid=A413711593&rfr_iscdi=true |