Loading…

Iterative Learning and Fractional Order Control for Complex Systems

ILC differs from most existing control methods in the sense that it exploits every possibility of incorporating past control information, such as tracking errors and control input signals, into the construction of the present control action to enable the controlled system to perform progressively be...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2019-01, Vol.2019 (1)
Main Authors: Bouakrif, Farah, Azar, Ahmad Taher, Volos, Christos K., Muñoz-Pacheco, Jesus M., Pham, Viet-Thanh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-5d74a22e69dcae731f59e8c0885cd16b87b305a905c063ffc3dfa535e5fc17e33
cites cdi_FETCH-LOGICAL-c442t-5d74a22e69dcae731f59e8c0885cd16b87b305a905c063ffc3dfa535e5fc17e33
container_end_page
container_issue 1
container_start_page
container_title Complexity (New York, N.Y.)
container_volume 2019
creator Bouakrif, Farah
Azar, Ahmad Taher
Volos, Christos K.
Muñoz-Pacheco, Jesus M.
Pham, Viet-Thanh
description ILC differs from most existing control methods in the sense that it exploits every possibility of incorporating past control information, such as tracking errors and control input signals, into the construction of the present control action to enable the controlled system to perform progressively better from operation to operation. Since the ILC method was proposed by Uchiyama [8] and presented as a formal theory by Arimoto [9], this technique has been the center of interest of many researchers over the last decades [10–19]. Fractional order control systems have also received considerable attention recently, from both an academic and industrial viewpoint, because of their increased flexibility (concerning integer-order systems) which allows more accurate modeling of complex systems and the achievement of more challenging control requirements [20–24]. Complex dynamics of the fractional-order chaotic system are analyzed by means of Lyapunov exponent spectra, bifurcation diagrams, and phase diagrams. [...]tracking synchronization controllers were theoretically designed and numerically investigated. [...]this system can provide rich encoding keys for chaotic communication.
doi_str_mv 10.1155/2019/7958625
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bea3b49ad95b4a989e84e5756fd84546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A613619239</galeid><doaj_id>oai_doaj_org_article_bea3b49ad95b4a989e84e5756fd84546</doaj_id><sourcerecordid>A613619239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-5d74a22e69dcae731f59e8c0885cd16b87b305a905c063ffc3dfa535e5fc17e33</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEEqVw4wNE4ghp_Sdjx8dqRWGllXoonK2JPV68ysaL4wL99nhJxbHywaOn37wZ-zXNe86uOAe4Foyba21gUAJeNBecGdMxEOrludaqE3rQr5s3y3JgjBkl9UWz2RbKWOIvaneEeY7zvsXZt7cZXYlpxqm9y55yu0lzyWlqQzrXx9NEf9r7x6XQcXnbvAo4LfTu6b5svt9-_rb52u3uvmw3N7vO9b0oHXjdoxCkjHdIWvIAhgbHhgGc52oc9CgZoGHgmJIhOOkDggSC4LgmKS-b7errEx7sKccj5kebMNp_Qsp7i7lEN5EdCeXYG_QGxh7NUAf1BBpU8EMPvapeH1avU04_H2gp9pAecn3uYoUQUoOUHCp1tVJ7rKZxDqnUf6nH0zG6NFOIVb9RXCpuhDS14dPa4HJalkzh_5qc2XNG9pyRfcqo4h9X_EecPf6Oz9N_AdVWj0k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2223753315</pqid></control><display><type>article</type><title>Iterative Learning and Fractional Order Control for Complex Systems</title><source>Wiley Open Access</source><creator>Bouakrif, Farah ; Azar, Ahmad Taher ; Volos, Christos K. ; Muñoz-Pacheco, Jesus M. ; Pham, Viet-Thanh</creator><creatorcontrib>Bouakrif, Farah ; Azar, Ahmad Taher ; Volos, Christos K. ; Muñoz-Pacheco, Jesus M. ; Pham, Viet-Thanh</creatorcontrib><description>ILC differs from most existing control methods in the sense that it exploits every possibility of incorporating past control information, such as tracking errors and control input signals, into the construction of the present control action to enable the controlled system to perform progressively better from operation to operation. Since the ILC method was proposed by Uchiyama [8] and presented as a formal theory by Arimoto [9], this technique has been the center of interest of many researchers over the last decades [10–19]. Fractional order control systems have also received considerable attention recently, from both an academic and industrial viewpoint, because of their increased flexibility (concerning integer-order systems) which allows more accurate modeling of complex systems and the achievement of more challenging control requirements [20–24]. Complex dynamics of the fractional-order chaotic system are analyzed by means of Lyapunov exponent spectra, bifurcation diagrams, and phase diagrams. [...]tracking synchronization controllers were theoretically designed and numerically investigated. [...]this system can provide rich encoding keys for chaotic communication.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2019/7958625</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Automation ; Bifurcation theory ; Chaos theory ; Communications systems ; Complex systems ; Control algorithms ; Control methods ; Control systems ; Control theory ; Iterative methods ; Mathematical models ; Phase diagrams ; Robots ; Synchronism ; Systems science ; Tracking control ; Tracking errors</subject><ispartof>Complexity (New York, N.Y.), 2019-01, Vol.2019 (1)</ispartof><rights>Copyright © 2019 Farah Bouakrif et al.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Farah Bouakrif et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-5d74a22e69dcae731f59e8c0885cd16b87b305a905c063ffc3dfa535e5fc17e33</citedby><cites>FETCH-LOGICAL-c442t-5d74a22e69dcae731f59e8c0885cd16b87b305a905c063ffc3dfa535e5fc17e33</cites><orcidid>0000-0002-8198-1765 ; 0000-0001-5151-9812 ; 0000-0002-9106-6982 ; 0000-0002-7869-6373 ; 0000-0001-8763-7255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bouakrif, Farah</creatorcontrib><creatorcontrib>Azar, Ahmad Taher</creatorcontrib><creatorcontrib>Volos, Christos K.</creatorcontrib><creatorcontrib>Muñoz-Pacheco, Jesus M.</creatorcontrib><creatorcontrib>Pham, Viet-Thanh</creatorcontrib><title>Iterative Learning and Fractional Order Control for Complex Systems</title><title>Complexity (New York, N.Y.)</title><description>ILC differs from most existing control methods in the sense that it exploits every possibility of incorporating past control information, such as tracking errors and control input signals, into the construction of the present control action to enable the controlled system to perform progressively better from operation to operation. Since the ILC method was proposed by Uchiyama [8] and presented as a formal theory by Arimoto [9], this technique has been the center of interest of many researchers over the last decades [10–19]. Fractional order control systems have also received considerable attention recently, from both an academic and industrial viewpoint, because of their increased flexibility (concerning integer-order systems) which allows more accurate modeling of complex systems and the achievement of more challenging control requirements [20–24]. Complex dynamics of the fractional-order chaotic system are analyzed by means of Lyapunov exponent spectra, bifurcation diagrams, and phase diagrams. [...]tracking synchronization controllers were theoretically designed and numerically investigated. [...]this system can provide rich encoding keys for chaotic communication.</description><subject>Automation</subject><subject>Bifurcation theory</subject><subject>Chaos theory</subject><subject>Communications systems</subject><subject>Complex systems</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Phase diagrams</subject><subject>Robots</subject><subject>Synchronism</subject><subject>Systems science</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEEqVw4wNE4ghp_Sdjx8dqRWGllXoonK2JPV68ysaL4wL99nhJxbHywaOn37wZ-zXNe86uOAe4Foyba21gUAJeNBecGdMxEOrludaqE3rQr5s3y3JgjBkl9UWz2RbKWOIvaneEeY7zvsXZt7cZXYlpxqm9y55yu0lzyWlqQzrXx9NEf9r7x6XQcXnbvAo4LfTu6b5svt9-_rb52u3uvmw3N7vO9b0oHXjdoxCkjHdIWvIAhgbHhgGc52oc9CgZoGHgmJIhOOkDggSC4LgmKS-b7errEx7sKccj5kebMNp_Qsp7i7lEN5EdCeXYG_QGxh7NUAf1BBpU8EMPvapeH1avU04_H2gp9pAecn3uYoUQUoOUHCp1tVJ7rKZxDqnUf6nH0zG6NFOIVb9RXCpuhDS14dPa4HJalkzh_5qc2XNG9pyRfcqo4h9X_EecPf6Oz9N_AdVWj0k</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bouakrif, Farah</creator><creator>Azar, Ahmad Taher</creator><creator>Volos, Christos K.</creator><creator>Muñoz-Pacheco, Jesus M.</creator><creator>Pham, Viet-Thanh</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8198-1765</orcidid><orcidid>https://orcid.org/0000-0001-5151-9812</orcidid><orcidid>https://orcid.org/0000-0002-9106-6982</orcidid><orcidid>https://orcid.org/0000-0002-7869-6373</orcidid><orcidid>https://orcid.org/0000-0001-8763-7255</orcidid></search><sort><creationdate>20190101</creationdate><title>Iterative Learning and Fractional Order Control for Complex Systems</title><author>Bouakrif, Farah ; Azar, Ahmad Taher ; Volos, Christos K. ; Muñoz-Pacheco, Jesus M. ; Pham, Viet-Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-5d74a22e69dcae731f59e8c0885cd16b87b305a905c063ffc3dfa535e5fc17e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automation</topic><topic>Bifurcation theory</topic><topic>Chaos theory</topic><topic>Communications systems</topic><topic>Complex systems</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Phase diagrams</topic><topic>Robots</topic><topic>Synchronism</topic><topic>Systems science</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouakrif, Farah</creatorcontrib><creatorcontrib>Azar, Ahmad Taher</creatorcontrib><creatorcontrib>Volos, Christos K.</creatorcontrib><creatorcontrib>Muñoz-Pacheco, Jesus M.</creatorcontrib><creatorcontrib>Pham, Viet-Thanh</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouakrif, Farah</au><au>Azar, Ahmad Taher</au><au>Volos, Christos K.</au><au>Muñoz-Pacheco, Jesus M.</au><au>Pham, Viet-Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Learning and Fractional Order Control for Complex Systems</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>ILC differs from most existing control methods in the sense that it exploits every possibility of incorporating past control information, such as tracking errors and control input signals, into the construction of the present control action to enable the controlled system to perform progressively better from operation to operation. Since the ILC method was proposed by Uchiyama [8] and presented as a formal theory by Arimoto [9], this technique has been the center of interest of many researchers over the last decades [10–19]. Fractional order control systems have also received considerable attention recently, from both an academic and industrial viewpoint, because of their increased flexibility (concerning integer-order systems) which allows more accurate modeling of complex systems and the achievement of more challenging control requirements [20–24]. Complex dynamics of the fractional-order chaotic system are analyzed by means of Lyapunov exponent spectra, bifurcation diagrams, and phase diagrams. [...]tracking synchronization controllers were theoretically designed and numerically investigated. [...]this system can provide rich encoding keys for chaotic communication.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2019/7958625</doi><orcidid>https://orcid.org/0000-0002-8198-1765</orcidid><orcidid>https://orcid.org/0000-0001-5151-9812</orcidid><orcidid>https://orcid.org/0000-0002-9106-6982</orcidid><orcidid>https://orcid.org/0000-0002-7869-6373</orcidid><orcidid>https://orcid.org/0000-0001-8763-7255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2019-01, Vol.2019 (1)
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bea3b49ad95b4a989e84e5756fd84546
source Wiley Open Access
subjects Automation
Bifurcation theory
Chaos theory
Communications systems
Complex systems
Control algorithms
Control methods
Control systems
Control theory
Iterative methods
Mathematical models
Phase diagrams
Robots
Synchronism
Systems science
Tracking control
Tracking errors
title Iterative Learning and Fractional Order Control for Complex Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Learning%20and%20Fractional%20Order%20Control%20for%20Complex%20Systems&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Bouakrif,%20Farah&rft.date=2019-01-01&rft.volume=2019&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2019/7958625&rft_dat=%3Cgale_doaj_%3EA613619239%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-5d74a22e69dcae731f59e8c0885cd16b87b305a905c063ffc3dfa535e5fc17e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2223753315&rft_id=info:pmid/&rft_galeid=A613619239&rfr_iscdi=true