Loading…

Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels

Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo (RJMCMC) are used to predict the grain size of hot strip low carbon steels, as a function of steel composition. Results show a good agreement with experimental data taken from Mobarakeh Steel Company (MSC). The developed mo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Serbian Chemical Society 2012, Vol.77 (7), p.937-944
Main Authors: Botlani-Esfahani, Mohsen, Toroghinejad, Reza
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3
cites
container_end_page 944
container_issue 7
container_start_page 937
container_title Journal of the Serbian Chemical Society
container_volume 77
creator Botlani-Esfahani, Mohsen
Toroghinejad, Reza
description Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo (RJMCMC) are used to predict the grain size of hot strip low carbon steels, as a function of steel composition. Results show a good agreement with experimental data taken from Mobarakeh Steel Company (MSC). The developed model is capable of recognizing the role and importance of elements in grain refinement. Furthermore, effects of these elements including manganese, silicon and vanadium are investigated in the present study, which are in good agreement with the literature. nema
doi_str_mv 10.2298/JSC111115011B
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb</doaj_id><sourcerecordid>oai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3</originalsourceid><addsrcrecordid>eNpV0EtLAzEUBeAgCtbq0n3-wGgek8xk2Q4-WmwFH-vh5jFtytgMSUDqr7e1Ing2Fw7cb3EQuqbkhjFV385fG3qIIJROT9CI1owUVcnoKRoRLlghKFfn6CKlDSFMCF6OUDsZht4byD5scejwFHYuedjiyXKJYWvxy3zRLBqcAx6is95knNcOryL4LU7-yx2e1iHjlKMfcB8-sYGo91jKzvXpEp110Cd39XvH6P3-7q15LJ6eH2bN5KkwtK50YVTFSVdTwnXZOWkrIW1nhSO0BqKJLKUsjaBlbbiutKOS1baSmrJKgSQAfIxmR9cG2LRD9B8Qd20A3_4UIa5aiNmb3rXagWKdLqXVqhSEq04ormAPc1JZq_dWcbRMDClF1_15lLSHpdt_S_NvvPNvTw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels</title><source>IngentaConnect Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Botlani-Esfahani, Mohsen ; Toroghinejad, Reza</creator><creatorcontrib>Botlani-Esfahani, Mohsen ; Toroghinejad, Reza</creatorcontrib><description>Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo (RJMCMC) are used to predict the grain size of hot strip low carbon steels, as a function of steel composition. Results show a good agreement with experimental data taken from Mobarakeh Steel Company (MSC). The developed model is capable of recognizing the role and importance of elements in grain refinement. Furthermore, effects of these elements including manganese, silicon and vanadium are investigated in the present study, which are in good agreement with the literature. nema</description><identifier>ISSN: 0352-5139</identifier><identifier>EISSN: 1820-7421</identifier><identifier>DOI: 10.2298/JSC111115011B</identifier><language>eng</language><publisher>Serbian Chemical Society</publisher><subject>artificial neural network ; grain size ; hot strip ; low carbon steel</subject><ispartof>Journal of the Serbian Chemical Society, 2012, Vol.77 (7), p.937-944</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Botlani-Esfahani, Mohsen</creatorcontrib><creatorcontrib>Toroghinejad, Reza</creatorcontrib><title>Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels</title><title>Journal of the Serbian Chemical Society</title><description>Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo (RJMCMC) are used to predict the grain size of hot strip low carbon steels, as a function of steel composition. Results show a good agreement with experimental data taken from Mobarakeh Steel Company (MSC). The developed model is capable of recognizing the role and importance of elements in grain refinement. Furthermore, effects of these elements including manganese, silicon and vanadium are investigated in the present study, which are in good agreement with the literature. nema</description><subject>artificial neural network</subject><subject>grain size</subject><subject>hot strip</subject><subject>low carbon steel</subject><issn>0352-5139</issn><issn>1820-7421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpV0EtLAzEUBeAgCtbq0n3-wGgek8xk2Q4-WmwFH-vh5jFtytgMSUDqr7e1Ing2Fw7cb3EQuqbkhjFV385fG3qIIJROT9CI1owUVcnoKRoRLlghKFfn6CKlDSFMCF6OUDsZht4byD5scejwFHYuedjiyXKJYWvxy3zRLBqcAx6is95knNcOryL4LU7-yx2e1iHjlKMfcB8-sYGo91jKzvXpEp110Cd39XvH6P3-7q15LJ6eH2bN5KkwtK50YVTFSVdTwnXZOWkrIW1nhSO0BqKJLKUsjaBlbbiutKOS1baSmrJKgSQAfIxmR9cG2LRD9B8Qd20A3_4UIa5aiNmb3rXagWKdLqXVqhSEq04ormAPc1JZq_dWcbRMDClF1_15lLSHpdt_S_NvvPNvTw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Botlani-Esfahani, Mohsen</creator><creator>Toroghinejad, Reza</creator><general>Serbian Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2012</creationdate><title>Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels</title><author>Botlani-Esfahani, Mohsen ; Toroghinejad, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>artificial neural network</topic><topic>grain size</topic><topic>hot strip</topic><topic>low carbon steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botlani-Esfahani, Mohsen</creatorcontrib><creatorcontrib>Toroghinejad, Reza</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of the Serbian Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botlani-Esfahani, Mohsen</au><au>Toroghinejad, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels</atitle><jtitle>Journal of the Serbian Chemical Society</jtitle><date>2012</date><risdate>2012</risdate><volume>77</volume><issue>7</issue><spage>937</spage><epage>944</epage><pages>937-944</pages><issn>0352-5139</issn><eissn>1820-7421</eissn><abstract>Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo (RJMCMC) are used to predict the grain size of hot strip low carbon steels, as a function of steel composition. Results show a good agreement with experimental data taken from Mobarakeh Steel Company (MSC). The developed model is capable of recognizing the role and importance of elements in grain refinement. Furthermore, effects of these elements including manganese, silicon and vanadium are investigated in the present study, which are in good agreement with the literature. nema</abstract><pub>Serbian Chemical Society</pub><doi>10.2298/JSC111115011B</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0352-5139
ispartof Journal of the Serbian Chemical Society, 2012, Vol.77 (7), p.937-944
issn 0352-5139
1820-7421
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb
source IngentaConnect Journals; Free Full-Text Journals in Chemistry
subjects artificial neural network
grain size
hot strip
low carbon steel
title Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Bayesian%20ANN%20and%20RJMCMC%20to%20predict%20the%20grain%20size%20of%20hot%20strip%20low%20carbon%20steels&rft.jtitle=Journal%20of%20the%20Serbian%20Chemical%20Society&rft.au=Botlani-Esfahani,%20Mohsen&rft.date=2012&rft.volume=77&rft.issue=7&rft.spage=937&rft.epage=944&rft.pages=937-944&rft.issn=0352-5139&rft.eissn=1820-7421&rft_id=info:doi/10.2298/JSC111115011B&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true