Loading…
Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels
Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo (RJMCMC) are used to predict the grain size of hot strip low carbon steels, as a function of steel composition. Results show a good agreement with experimental data taken from Mobarakeh Steel Company (MSC). The developed mo...
Saved in:
Published in: | Journal of the Serbian Chemical Society 2012, Vol.77 (7), p.937-944 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3 |
---|---|
cites | |
container_end_page | 944 |
container_issue | 7 |
container_start_page | 937 |
container_title | Journal of the Serbian Chemical Society |
container_volume | 77 |
creator | Botlani-Esfahani, Mohsen Toroghinejad, Reza |
description | Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo
(RJMCMC) are used to predict the grain size of hot strip low carbon steels,
as a function of steel composition. Results show a good agreement with
experimental data taken from Mobarakeh Steel Company (MSC). The developed
model is capable of recognizing the role and importance of elements in grain
refinement. Furthermore, effects of these elements including manganese,
silicon and vanadium are investigated in the present study, which are in good
agreement with the literature.
nema |
doi_str_mv | 10.2298/JSC111115011B |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb</doaj_id><sourcerecordid>oai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3</originalsourceid><addsrcrecordid>eNpV0EtLAzEUBeAgCtbq0n3-wGgek8xk2Q4-WmwFH-vh5jFtytgMSUDqr7e1Ing2Fw7cb3EQuqbkhjFV385fG3qIIJROT9CI1owUVcnoKRoRLlghKFfn6CKlDSFMCF6OUDsZht4byD5scejwFHYuedjiyXKJYWvxy3zRLBqcAx6is95knNcOryL4LU7-yx2e1iHjlKMfcB8-sYGo91jKzvXpEp110Cd39XvH6P3-7q15LJ6eH2bN5KkwtK50YVTFSVdTwnXZOWkrIW1nhSO0BqKJLKUsjaBlbbiutKOS1baSmrJKgSQAfIxmR9cG2LRD9B8Qd20A3_4UIa5aiNmb3rXagWKdLqXVqhSEq04ormAPc1JZq_dWcbRMDClF1_15lLSHpdt_S_NvvPNvTw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels</title><source>IngentaConnect Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Botlani-Esfahani, Mohsen ; Toroghinejad, Reza</creator><creatorcontrib>Botlani-Esfahani, Mohsen ; Toroghinejad, Reza</creatorcontrib><description>Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo
(RJMCMC) are used to predict the grain size of hot strip low carbon steels,
as a function of steel composition. Results show a good agreement with
experimental data taken from Mobarakeh Steel Company (MSC). The developed
model is capable of recognizing the role and importance of elements in grain
refinement. Furthermore, effects of these elements including manganese,
silicon and vanadium are investigated in the present study, which are in good
agreement with the literature.
nema</description><identifier>ISSN: 0352-5139</identifier><identifier>EISSN: 1820-7421</identifier><identifier>DOI: 10.2298/JSC111115011B</identifier><language>eng</language><publisher>Serbian Chemical Society</publisher><subject>artificial neural network ; grain size ; hot strip ; low carbon steel</subject><ispartof>Journal of the Serbian Chemical Society, 2012, Vol.77 (7), p.937-944</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Botlani-Esfahani, Mohsen</creatorcontrib><creatorcontrib>Toroghinejad, Reza</creatorcontrib><title>Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels</title><title>Journal of the Serbian Chemical Society</title><description>Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo
(RJMCMC) are used to predict the grain size of hot strip low carbon steels,
as a function of steel composition. Results show a good agreement with
experimental data taken from Mobarakeh Steel Company (MSC). The developed
model is capable of recognizing the role and importance of elements in grain
refinement. Furthermore, effects of these elements including manganese,
silicon and vanadium are investigated in the present study, which are in good
agreement with the literature.
nema</description><subject>artificial neural network</subject><subject>grain size</subject><subject>hot strip</subject><subject>low carbon steel</subject><issn>0352-5139</issn><issn>1820-7421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpV0EtLAzEUBeAgCtbq0n3-wGgek8xk2Q4-WmwFH-vh5jFtytgMSUDqr7e1Ing2Fw7cb3EQuqbkhjFV385fG3qIIJROT9CI1owUVcnoKRoRLlghKFfn6CKlDSFMCF6OUDsZht4byD5scejwFHYuedjiyXKJYWvxy3zRLBqcAx6is95knNcOryL4LU7-yx2e1iHjlKMfcB8-sYGo91jKzvXpEp110Cd39XvH6P3-7q15LJ6eH2bN5KkwtK50YVTFSVdTwnXZOWkrIW1nhSO0BqKJLKUsjaBlbbiutKOS1baSmrJKgSQAfIxmR9cG2LRD9B8Qd20A3_4UIa5aiNmb3rXagWKdLqXVqhSEq04ormAPc1JZq_dWcbRMDClF1_15lLSHpdt_S_NvvPNvTw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Botlani-Esfahani, Mohsen</creator><creator>Toroghinejad, Reza</creator><general>Serbian Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2012</creationdate><title>Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels</title><author>Botlani-Esfahani, Mohsen ; Toroghinejad, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>artificial neural network</topic><topic>grain size</topic><topic>hot strip</topic><topic>low carbon steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botlani-Esfahani, Mohsen</creatorcontrib><creatorcontrib>Toroghinejad, Reza</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of the Serbian Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botlani-Esfahani, Mohsen</au><au>Toroghinejad, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels</atitle><jtitle>Journal of the Serbian Chemical Society</jtitle><date>2012</date><risdate>2012</risdate><volume>77</volume><issue>7</issue><spage>937</spage><epage>944</epage><pages>937-944</pages><issn>0352-5139</issn><eissn>1820-7421</eissn><abstract>Artificial Neural Network (ANN) and Reversible Jump Markov Chain Monte Carlo
(RJMCMC) are used to predict the grain size of hot strip low carbon steels,
as a function of steel composition. Results show a good agreement with
experimental data taken from Mobarakeh Steel Company (MSC). The developed
model is capable of recognizing the role and importance of elements in grain
refinement. Furthermore, effects of these elements including manganese,
silicon and vanadium are investigated in the present study, which are in good
agreement with the literature.
nema</abstract><pub>Serbian Chemical Society</pub><doi>10.2298/JSC111115011B</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0352-5139 |
ispartof | Journal of the Serbian Chemical Society, 2012, Vol.77 (7), p.937-944 |
issn | 0352-5139 1820-7421 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb |
source | IngentaConnect Journals; Free Full-Text Journals in Chemistry |
subjects | artificial neural network grain size hot strip low carbon steel |
title | Application of Bayesian ANN and RJMCMC to predict the grain size of hot strip low carbon steels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Bayesian%20ANN%20and%20RJMCMC%20to%20predict%20the%20grain%20size%20of%20hot%20strip%20low%20carbon%20steels&rft.jtitle=Journal%20of%20the%20Serbian%20Chemical%20Society&rft.au=Botlani-Esfahani,%20Mohsen&rft.date=2012&rft.volume=77&rft.issue=7&rft.spage=937&rft.epage=944&rft.pages=937-944&rft.issn=0352-5139&rft.eissn=1820-7421&rft_id=info:doi/10.2298/JSC111115011B&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_bea92fb46db945039f5939a3b7307ddb%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c187b-c9730f8103b4fe6d756dfd5e018a0b064664c5148c3b7be1628d76b1279a60aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |