Loading…
Impact of recording length and other arrhythmias on atrial fibrillation detection from wrist photoplethysmogram using smartwatches
This study aimed to evaluate whether quantitative analysis of wrist photoplethysmography (PPG) could detect atrial fibrillation (AF). Continuous electrocardiograms recorded using an electrophysiology recording system and PPG obtained using a wrist-worn smartwatch were simultaneously collected from p...
Saved in:
Published in: | Scientific reports 2022-03, Vol.12 (1), p.5364-5364, Article 5364 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aimed to evaluate whether quantitative analysis of wrist photoplethysmography (PPG) could detect atrial fibrillation (AF). Continuous electrocardiograms recorded using an electrophysiology recording system and PPG obtained using a wrist-worn smartwatch were simultaneously collected from patients undergoing catheter ablation or electrical cardioversion. PPG features were extracted from 10, 25, 40, and 80 heartbeats of the split segments. Machine learning with a support vector machine and random forest approach were used to detect AF. A total of 116 patients were evaluated. We annotated > 117 h of PPG. A total of 6475 and 3957 segments of 25-beat pulse-to-pulse intervals (PPIs) were annotated as AF and sinus rhythm, respectively. The accuracy of the 25 PPIs yielded a test area under the receiver operating characteristic curve (AUC) of 0.9676, which was significantly better than the AUC for the 10 PPIs (0.9453; P |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-09181-1 |