Loading…

Development and Evaluation of a Virtual Environment to Assess Cycling Hazard Perception Skills

Safe cycling requires situational awareness to identify and perceive hazards in the environment to react to and avoid dangerous situations. Concurrently, tending to external distractions leads to a failure to identify hazards or to respond appropriately in a time-constrained manner. Hazard perceptio...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-08, Vol.21 (16), p.5499
Main Authors: van Paridon, Kjell, Timmis, Matthew A., Sadeghi Esfahlani, Shabnam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Safe cycling requires situational awareness to identify and perceive hazards in the environment to react to and avoid dangerous situations. Concurrently, tending to external distractions leads to a failure to identify hazards or to respond appropriately in a time-constrained manner. Hazard perception training can enhance the ability to identify and react to potential dangers while cycling. Although cycling on the road in the presence of driving cars provides an excellent opportunity to develop and evaluate hazard perception skills, there are obvious ethical and practical risks, requiring extensive resources to facilitate safety, particularly when involving children. Therefore, we developed a Cycling and Hazard Perception virtual reality (VR) simulator (CHP-VR simulator) to create a safe environment where hazard perception can be evaluated and/or trained in a real-time setting. The player interacts in the virtual environment through a stationary bike, where sensors on the bike transfer the player’s position and actions (speed and road positioning) into the virtual environment. A VR headset provides a real-world experience for the player, and a procedural content generation (PCG) algorithm enables the generation of playable artifacts. Pilot data using experienced adult cyclists was collected to develop and evaluate the VR simulator through measuring gaze behavior, both in VR and in situ. A comparable scene (cycling past a parked bus) in VR and in situ was used. In this scenario, cyclists fixated 20% longer at the bus in VR compared to in situ. However, limited agreement identified that the mean differences fell within 95% confidence intervals. The observed differences were likely attributed to a lower number of concurrently appearing elements (i.e., cars) in the VR environment compared with in situ. Future work will explore feasibility testing in young children by increasing assets and incorporating a game scoring system to direct attention to overt and covert hazards.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21165499