Loading…
Ti3C2Tx MXene-functionalized Hydroxyapatite/Halloysite nanotube filled poly– (lactic acid) coatings on magnesium: In vitro and antibacterial applications
•Mg surface was completely insulated with PLA based hybrid coatings.•Electrochemical in-vitro corrosion resistance increased with Ti3C2Tx MXene filler.•CaP particles were more precipitated on Ti3C2Tx MXene filled coatings on mg.•Antibacterial inhibition features were enhanced with Ti3C2Tx MXene func...
Saved in:
Published in: | Journal of magnesium and alloys 2024-09, Vol.12 (9), p.3758-3771 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Mg surface was completely insulated with PLA based hybrid coatings.•Electrochemical in-vitro corrosion resistance increased with Ti3C2Tx MXene filler.•CaP particles were more precipitated on Ti3C2Tx MXene filled coatings on mg.•Antibacterial inhibition features were enhanced with Ti3C2Tx MXene functionalization.
Magnesium (Mg) stands out in temporary biomaterial applications due to its biocompatibility, biodegradability, and low Young's modulus. However, controlling its corrosion through next-generation polymer-based functional coatings is crucial due to the rapid degradation behavior of Mg. In this study, the function of 2D lamellar Ti3C2Tx (MXene) in Hydroxyapatite (HA) and Halloysite nanotube (HNT) hybrid coatings in biodegradable poly– (lactic acid) (PLA) was investigated. The morphological and structural characterizations of the coatings on Mg were revealed through HRTEM, XPS, SEM-EDX, XRD, FTIR, and contact angle analyses/tests. Electrochemical in vitro corrosion tests (OCP, PDS, and EIS-Nyquist) were conducted for evaluate corrosion resistance under simulated body fluid (SBF) conditions. The bioactivity of the coatings in SBF have been revealed in accordance with the ISO 23,317 standard. Finally, antibacterial disk diffusion tests were conducted to investigate the functional effect of MXene in coatings. It has been determined that the presence of MXene in the coating increased not only surface wettability (131°, 85°, 77°, and 74° for uncoated, pH, PHH, and PHH/MXene coatings, respectively) but also increased corrosion resistance (1857.850, 42.357, 1.593, and 0.085 × 10–6, A/cm2 for uncoated, pH, PHH, and PHH/MXene coatings, respectively). It has been proven that the in vitro bioactivity of PLA-HA coatings is further enhanced by adding HNT and MXene, along with SEM morphologies after SBF. Finally, 2D lamellar MXene-filled coating exhibits antibacterial behavior against both E. coli and S. aureus bacteria.
[Display omitted] |
---|---|
ISSN: | 2213-9567 2213-9567 |
DOI: | 10.1016/j.jma.2024.09.017 |